Приводная система гребного винта надводного судна и способ обеспечения движения и управления по курсу. Новые типы движителей для плавсредств Поршневые паровые машины

Юный моделист-конструктор 1963 №4

В первом выпуске нашего сборника было помещено описание судна на подводных крыльях - "Метеор". Но это не единственное применение "крыльев" на судах.

В современном морском порту вы можете увидеть странную на первый взгляд картину: судно, движущееся по воде... боком. Если вода прозрачна и вы сможете заглянуть под корму, то удивитесь ещё больше, не обнаружив у судна руля. Однако, несмотря на это, судно свободно маневрирует.

Перед вами не что иное, как судно с крыльчатыми движителями, заменяющими и гребной винт и руль.

Крыльчатый движитель не похож на другие знакомые нам движители - гребной винт или гребное колесо. Его лопасти слегка напоминают вёсла, поставленные вертикально.

Крыльчатый движитель (рис. 1) состоит из нескольких вертикальных лопастей, расположенных на равных расстояниях по окружности вращающегося диска. Диск этот установлен заподлицо с обшивкой судна а круглом отверстии в днище судна. За пределы корпуса судна выступают только лопасти движителя, создающие силу упора, а все вспомогательные части, приводящие в движение диск с лопастями и связывающие его с корпусом судна, находятся внутри корпуса.

На каком же принципе основана работа крыльчатого движителя?

Лопасти крыльчатого движителя при вращении диска совершают два движения одновременно: вращаются вместе с диском вокруг его оси, и каждая лопасть поворачивается вокруг своей вертикальной оси то в. одну, то в другую сторону, не делая полного поворота. Благодаря этому при вращении диска вокруг своей оси каждая лопасть движителя поворачивается своей передней кромкой наружу в одной половине окружности вращения и внутрь - во второй половине окружности. Так как лопасть перемещается в воде всё время одной и той же кромкой вперёд, для создания большей силы упора и большей обтекаемости ее делают в форме авиационного крыла. Именно поэтому движитель и называют крыльчатым.

Чтобы лопасти перемещались в воде все время одной и той же кромкой вперёд, все лопасти крыльчатого движителя соединены тягой с одной точкой, так называемой точкой управления N. Каждая лопасть всегда расположена перпендикулярно к линии, соединяющей точку N и ось лопасти.

Чтобы понять принцип работы лопастей движителя, вполне достаточно привести следующую упрощённую схему (рис. 2).

При вращении диска движителя лопасть входит в воду под каким-то углом к касательной к данной точке окружности диска, и на нее будет давить вода с силой R, которую по правилам параллелограмма сил можно разложить на две составляющих силы (рис. 2, I): P - силу упора лопасти, направленную наружу от центра диска, и W - силу лобового сопротивления лопасти. Направление отбрасываемой движителем струи воды противоположно силе упора. В точке III (рис. 2) создастся аналогичное положение, только угол атаки лопасти будет отрицательным, а поэтому сила упора будет направлена к центру движителя О и будет складываться с силой упора первой лопасти, создавая полный упор движителя, двигающий судно и всегда направленный перпендикулярно отрезку ОN. В точках (рис. 2,II и IV) плоскости лопасти будут расположены параллельно касательной к окружности диска и не создадут силы упора.

Точку управления N с помощью специального устройства можно установить в любое положение по отношению к центру диска движителя О, изменяя этим самым направление отбрасываемой движителем струи воды, а следовательно, и упора движителя. Если поставить точку N над центром движителя О (рис. 3, I), то плоскости всех лопастей будут расположены параллельно касательным к окружности диска, проведённым в точках, где проходят оси лопастей. Сила упора в этом случае равна нулю, и, несмотря на то, что диск движителя будет вращаться, судно не сдвинется с места. Переместив точку N влево от центра О (рис. 3, II), мы даём судну передний ход, переместив вправо (рис. 3, IV) - задний ход, а переместив точку N вперёд от центра движителя, мы заставим корму судна двигаться вправо (рис. 3, III) и т. д. Благодаря этому судно с крыльчатым движителем может двигаться вперед и назад и изменять направление своего движения, не имея руля, а если поставить на судно два движителя, то оно сможет перемещаться даже боком.

Внимательно рассматривая рисунок 3, можно заметить, что движитель все время вращается в одну и ту же сторону, а судно перемещается в разные стороны.

Пользуясь этим свойством движителя, на судах можно устанавливать более простые двигатели - нереверсивные, то есть не меняющие направления вращения. Такие двигатели легче по весу по сравнению с реверсивными, проще по устройству и уходу за ними и значительно дешевле реверсивных.

Однако у крыльчатых движителей имеются и недостатки, основным из которых является сложность передачи вращения от двигателя к движителю, благодаря чему двигатели больших мощностей (свыше 5000 л. с.) с крыльчатыми движителями использовать нельзя, а это ограничивает размеры судов, на которых такие движители применяются.

Тем не менее основные свойства судов с крыльчатыми движителями - возможность иметь боковой ход, поворачиваться на месте, быстро изменять направление движения - делают такие суда незаменимыми при плавании в "узкостях": в каналах, на реках и в портах. Крыльчатые движители с успехом применяют на речных пассажирских судах, на портовых кранах и буксирах; производятся эксперименты по применению крыльчатых движителей на рыболовных траулерах.

На судах крыльчатые движители устанавливаются в местах, которые наиболее удобны для данного типа судна. На пассажирских судах движители устанавливаются в корме, на буксирах - в корме или в носу, на портовых кранах - посередине корпуса.

За образец модели судна с крыльчатым движителем можно взять буксир с движителем, установленным в носовой части судна. Такой буксир (теоретический чертеж его приведен на рис. 4) длиной 24,6 м, шириной 7,6 м

имел осадку 3 м (с лопастями движителя 3,8 м) и развивал скорость 10,3 узла (19,9 км/час) при мощности двигателя 552 кет (750 л. с.) с 320 об/мин; число оборотов движителя составляло 65 в минуту, а его диаметр - 3,66 м.

Журнал ГДР "Modelbau und Basteln" № 10 за 1960 год приводит следующее описание модели крыльчатого движителя. К днищу судна (рис. 5) прикреплен круглый кожух 1, внутри которого расположен ротор движители 2 с верхним и нижним дисками 3. Сквозь диски ротора 3 пропущены оси 4, к которым прикреплены лопасти 5. Сквозь верхний диск ротора пропущен трубчатый гребной вал 6, который с помощью фланца прикреплён к диску снизу. Дальше вал проходит сквозь фигурную крышку 7, прикреплённую к кожуху 1. Поверх крышки на вал надето и прижато к валу установочное кольцо 8, а поверх установочного кольца надет и прикреплён к валу ведущий шкив 9. На шкив надевается приводной ремень 10, идущий от приводного шкива 11 сидящего на валу 12 двигателя 13 (рис. 6). Верхний конец вала 12 вращается в подшипнике 14. прикрепленном к палубе модели.

Сквозь трубчатый гребной вал 6 пропущен рулевой вал 15, на котором поверх шкива 9 надето установочное кольцо 8а. На верхний конец рулевого вала насажено червячное колесо 16, приводимое во вращение червячным приводом от маленького электродвигателя 17. Червячная передача подбирается с таким расчётом, чтобы червячное колесо 16, а с ним и вал 15 могли бы делать 8-10 об/мин. Тогда модель сможет изменить ход с "полного вперёд" до "полного назад" через 6-8 сек. На нижний конец рулевого вала 15 насажен эксцентрик 18 с пальцем 19. На палец надеты концы тяг 20, идущих к кривошипам 21, поворачивающим лопасти. На оси 4 лопастей 5 надеваются втулки 22, на которых держатся кривошипы.

При таком устройстве эксцентрика 18 (рис. 7) модель будет перемещаться вперед и поворачивать в заданном направлении. Изменять же скорость движения и останавливать судно можно, только изменяя число оборотов двигателя или останавливая его.

Это происходит потому, что величина OA (в данном случае расстояние от оси 15 до пальца 19) остаётся все время постоянной. Изменять величину упора, передвигая точку N ближе к центру О или же в самый центр О, и тем останавливать движение судна (рис. 3, I) невозможно. Величину ON в этой модели берут в пределах 1/6 - 1/3,5 радиуса диска движителя. При большей или меньшей величине эксцентрицитета угол атаки будет или слишком велик, или слишком мал, поэтому лопасти не создадут необходимой силы упора.

Лопасти движителя делают из тонкого металлa (рис. 8), причём передний валик, на котором загибают металл, берут вдвое толще оси лопасти.

Для простоты модели число лопастей лучше всего принять равным 4, так как у настоящих движителей число лопастей меняется в пределах от 4 до 8. Длину лопасти определяют по размерам диаметра диска движителя (около 0,7 этого диаметра), а ширину лопасти берут в пределах 0,3 её длины. Эта ширина принимается в самой верхней части лопасти, так как форму лопасти принимают за половину эллипса с полуосями, равными длине лопасти и половине её наибольшей ширины (ширины у корня).

Величина полного упора движители T выражается формулой:

F - общая площадь лопастей,
D - диаметр ротора движителя,
n - число оборотов движителя.

Отсюда видно, что наиболее выгодно принимать возможно больший диаметр ротора, так как с его увеличением растёт и площадь лопастей. Например, на буксире, приведённом на рисунке 4, диаметр ротора движителя равен почти половине ширины буксира. В техническом кружке вы вполне сможете изготовить модели движителя с полной регулировкой управления, подобной применяемой в настоящих движителях.

В такой модели (рис. 9) для перемещения пальца 19 в положение над центром движителя (то есть для того, чтобы у лопастей не было упора и судно останавливалось) или для перемещения в какое-то промежуточное положение между крайним и центральным (чтобы изменить угол атаки лопастей и величину упора), рулевой вал 15 также делают трубчатым и сквозь него пропускают регулировочный вал 23, на верхнем конце которого насажено червячное колесо 24, приводимое во вращение вторым небольшим электродвигателем 25 с помощью червяка 26 (рис 10). На нижнем конце регулировочного вала 23 крепят кронштейн 28, в котором палец 19 эксцентрика перемещается с помощью ползунка 29. Эксцентрик 18 делается составным. Рулевой вал 15 поворачивает эксцентрик вместе с кронштейном 28, а при повороте регулировочного вала 23 эксцентрик 18а начинает поворачиваться и перемещать ползунок 29 с пальцем 19 по кронштейну 28, устанавливая его в нужное положение (рис. 11, 1-4). Для упрощения эксцентрик 18 можно сделать не составным, а в виде вилки (рис. 11, 5).

В связи с тем, что палец 19 должен перемещаться и по тягам 20, эти тяги делают в виде вилок (рис. 12).

Модель судна с крыльчатым движителем должна иметь или программное управление, или управление по радио, так как иначе будет невозможным выявить на ходу все качества крыльчатого движителя. Попробуйте в своем кружке построить модель судна с крыльчатым движителем и напишите нам в редакцию, что у вас из этого получилось.

Н. ГРИГОРЬЕВ, капитан дальнего плавания

При движении с некоторой скоростью V судно испытывает силу
сопротивления окружающей среды R (воды и воздуха), направленную в
сторону, противоположную его движению.
Гидродинамические силы, приложенные к элементам поверхности корпуса движущегося судна, можно разложить на две составляющие: касательную и нормальную.
Касательную составляющую называют силой трения, а нормальную - силой давления. На рисунке сила трения τ и сила давления Р действуют на выделенный элемент смоченной поверхности судна. Проецируя все элементарные силы трения на направление скорости
движения судна и суммируя их по всей смоченной поверхности, получим результирующую сил трения - сопротивление трения RТР, обусловленное действием сил вязкости.
Результирующая проекции сил давления на направление скорости движения
судна V, взятая по всей смоченной поверхности, определяет сопротивление давления RД, которое обуславливается плотностью и вязкостью воды.
Давления по поверхности судна распределяются неравномерно: в носовой
части они больше, в кормовой - меньше. Такой перепад давлений образует
сопротивление давления, которое в свою очередь разделяют на две части.
Первая часть - сопротивление формы RФ, вызванная влиянием вязкости жидкости, вторая -волновое сопротивление RB зависит от интенсивности волновых движений жидкости, вызванных движущимся судном.
Каждое судно имеет те или иные выступающие части (рули, кронштейны и
выкружки гребных валов, скуловые кили и т.п.). Сопротивление воды,
вызываемое ими, называют сопротивлением выступающих частей RВ.Ч.. Кроме того, судно испытывает воздушное сопротивление RВОЗ, распределенное по надводной поверхности движущегося судна.
Таким образом, полное сопротивление движению судна суммируется из следуюших составляющих:

R = RТР + RB + RФ+ RВ.Ч. + RВОЗ (1)

Для определения каждой составляющей полного сопротивления
применяются различные методы. Сопротивление трения определяется
расчетным путем на основании теории пограничного слоя. Сопротивление
формы и волновое сопротивление, объединенные под общим названием остаточного сопротивления Ro, определяются экспериментальными методами путем испытания моделей судов в опытовых бассейнах.
В практических расчетах полное сопротивление движению судна
вычисляется по формуле:



R = C × (ρπV2 / 2) × (S + SВЧ), (2)

где С - коэффициент полного сопротивления;
S - смоченная поверхность голого корпуса;
SВЧ - смоченная поверхность выступающих частей;
ρ - плотность воды;
V - скорость судна.
По аналогии с формулой (1) коэффициент полного сопротивления может быть представлен в виде суммы коэффициентов:

C = CТР + CB + CФ+ CВ.Ч. + CВОЗ или C = CТР + CО + CВ.Ч. + CВОЗ

где Со - коэффициент остаточного сопротивления.
Следовательно, полное сопротивление судна равно:
R = (CТР + CО + CВ.Ч. + CВОЗ) × (ρπV2 / 2) × (S + SВЧ) (3).

Движущая сила Pe создается и поддерживается судовыми движителями, преобразующими механическую энергию поступательного движения судна.

В процессе работы движитель воздействует на окружающий судно поток, а корпус судна изменяет поток в районе расположения движителя.

Полезная мощность, которую развивает движитель: N=Pvp

Поторебляемая движителем мощность Np=Mw

(М-момент, передаваемый движителю от двигателя, w-угловая скорость вращения гребного винта)

Судовые движители по принципу действия являются гидравлическими или гидрореактивными. В последнее время применяются воздушные движители (суда на воздушной подушке оборудуют воздушными винтами).

Действие основано на отбрасывании в сторону, обратную направлению движения судна, масс окуржающей среды: воды или воздуха. Это осуществляется засчет сообщения массам, перерабатываемым рабочими элементами движителяколичества движения. Реакция отброшенных масс воспринимается деталями движителя. Ее составляющая в направлении движения судна ности назвоние упора движителя. Силы, возникающие на элементах движителей, могут создаваться как за счет сил сопротивления при движении движителя в окружающей среде, так и за счет подъемной силы- по природе аналогичной подъемной силе несущего крыла.

Гребные винты применяются на судах различного типа и назначения, они отличаются простотой конструкции, удовлетворительной эксплуатационной надежностью и относительно высоким КПД. Разновидностями гребного винта являются винты регулируемого шага, соосные винты противоположного вращения,гребные винтытандем.

Крыльчатый движитель обладает специфическими свойствами.

Водометные движители

Существуют другие типы движителей, среди которых можно отметить газоводометные и роторные.

Судовыми движителями называются специальные устройства, которые преобразуют энергию главных двигателей в движущую силу (полезную тягу), необходимую для преодоления сопротивления среды движению судна и обеспечения заданной скорости его движения.
По принципу действия судовые движители являются гидрореактивными, т.к. они создают движущую силу за счет реакции масс воды, отбрасываемых рабочими деталями движителя - лопастями - в сторону, противоположную движению судна. В настоящее время на водном транспорте применяются следующие основные типы судовых движителей: гребной винт, гребное колесо, крыльчатый и водометный движители. Гребной винт служит основным типом движителя
для морских судов. Он состоит из нескольких лопастей, расположенных на ступице на одинаковых угловых расстояниях друг от друга. Число лопастей гребных винтов колеблется от 2 до 6. В целях предотвращения вибраций кормовой оконечности одновинтовых судов, число лопастей гребного винта принимают не менее четырех. Диаметр гребных винтов крупных современных судов достигает 6 - 8 м.
Различают три основных конструктивных типа гребных винтов: цельные винты (цельнолитые), винты со съемными лопастями (сборные) и винты с поворотными лопастями - винты регулируемого шага (В Р Ш). Гребной винт характеризует его шаг. Шагом винта называется расстояние, на которое переместится точка винта за один полный оборот винта при вращении его в абсолютно твердом теле. Гребные винты, в зависимости от того, в какую сторону они вращаются, бывают левого и правого шага. В отличие от лопастей В Ф Ш у винтов регулируемого шага лопасти могут поворачиваться вокруг своей продольной оси и изменять шаг, что обеспечивает возможность использования полной мощности двигателя при оптимальной частоте вращения на любом режиме движения судна. Расчет гребного винта заключается в определении его геометрических характеристик (диаметра, шага, дискового отношения и числа лопастей), обеспечивающих наиболее высокие пропульсивные качества судну в основном режиме его эксплуатации. Так, транспортному судну указанные характеристики должны обеспечить наивысшую скорость, буксирному - наибольшую тягу на гаке при полном использовании мощности главных двигателей.
Преимущества и недостатки В Р Ш по сравнению с обычным винтом: возможность изменять положение лопастей у В Р Ш позволяет изменять силу упора винта не меняя частоты и направления вращения вала с полного переднего хода до нуля, а затем до полного заднего хода. Это позволяет использовать на судне нереверсивный двигатель, который проще в обслуживании и моторесурс которого значительно выше реверсивного. За счет того, что нет необходимости выполнять реверс для изменения силы упора винта, а достаточно только развернуть лопасти винта, что делается дистанционно с мостика, время перехода судна от одного режима движения к
другому значительно сокращается. Это улучшает маневренные качества судна, упрощает эксплуатации двигателя. Но В Р Ш значительно сложнее по конструкции, что уменьшает его надежность и увеличивает стоимость. В Р Ш имеют при том же К П Д больший вес и размеры, чем обычные винты, что усложняет их крепление.

К основным геометрическим элементам и характеристикам, определяющим действие гребного лодочного винта, относятся:
1. Диамерт винта D=2R, представляющий собой диаметр окружности, описываемой самой удаленной от оси винта точкой лопаси. Диаметр лодочного винта определяется площадью гидравлического , или рабочего , сечения движителя.
2. Радиус лодочного винта R=0,5D - расстояние от оси гребного винта до наиболее удаленной точнки, называемой краем лопасти.
3. Геометрический , или конструктивный , шаг винта - H, характеризующий возможное перемещение винта за один оборот при движении бе скольжения. Конструктивный шаг винта определяется шагом винтовых линий, образующих нагнетательную (кормовую) поверхность лопасти гребного лодочного винта, и находится по формуле: H=2πrtgѵ,

где r - радиус рассматриваемого сечения лопасти; tgѵ - тангенс шагового угла на радиусе r.
Различают лодочные винты постоянного шага H = const и переменного H = ϝ(r), у которых шаг вдоль радиуса лопасти изменяется по какому-либо закону.
4. Конструктивное шаговоре отношение H/D - отношение конструктивного шага винта к его диаметру.
5. Дисковое отношение Θ, представляющее отношение суммарной площади всех z лопастей к площади диска, ометаемого винтом, Θ=A/Ad=(2zbcp(D-dc))/(πDD),

6. Приведенный , или относительный , радиус лопасти, представляющий собой отношение радиуса ента давления лопасти R0 к наибольшему радиусу гребного винта R. Обычно принимается, что центр давления, характеризующий точку приложения к лопасти равнодействующей всех сил, совпадает с центром тяжести спрямленной поверхности лопасти.
7. Профиль сечения лопасти , под которым понимается спрямленный на плоскость след сечения лопасти лодочного винта соосным с ним круговым цилиндром на заданном радиусе.

Для характеристики режима работы гребного винта в целом используют понятие поступи. Линейной поступью hp винта называется путь, проходимый винтом в осевом направлении за время одного оборота=vp/hp

Отношение линейной поступи к диаметру винта называется относительной поступью или просто поступью винта. λp=hp /D=Vp/nD

Шаг винта- расстояние, которое проходит винт за один оборот в твоердом теле.

Безразмерные гидродинамические характеристики гребного винта, представленные в виде кривых в функции от относительной поступи, называются кривыми действия. С их помощью можно определить упор, момент, КПД винта при различных режимах работы.

На графике изображается также λ1=H1/D- шаговое отношение нулевого упора или гидродинамическое шаговое отношение.

λ2=H2/D- шаговое отношение нулевого момента.

При λp ›λ2, k2‹ 0, винт работает в режиме турбины, создавая вращающий момент за счет энергии потока.

В диапозоне изменения относительной поступи λ1 ‹ λp‹ λ2 винт не может быть использован ни как движитель, ни как турбина. Рабочей областью гребного винта, как судового движителя является диапозон относительных поступей 0 ‹ λp ‹ λ1, где P› 0

В каждом конкретном случае на расчетных режимах гребной винт должен работать в диапозоне относительных поступей, соответствующих высоким значениям КПД, что обеспечивается надлежащим выбором геометрических характеристик гребных винтов.

Одна из наиболее важных целей модельных гидродинамических испытаний винтов- получить систематизированные экспериментальныематериалы, необходимые для проектирования гребных винтов. Эти материалы получают в результате испытаний определенных серий винтов. При разработке серий моделей стремятся получить систематическое изменение их важнейших конструктивных элементов, существенно влияющихна гидродинамические характеристики винта.

Такими элементами являются: шаговое отношение H/D, дисковое отношение A/Ad, число лопастей Z, относительная толщина лопасти Ω, форма сечений лопасти, ее контур.

Материалы испыьаний представляются на диаграммах, содержащих кривые действия винтов серии, отличющихся только шаговым отношением. На диаграмме изображаются кривые коэффициента упора К1 и КПД в функции относительно поступи.

Каждая серия винтов, отличающихся шаговым отношением, представляется двумя диаграммами: диаграммой, посторенной в осях k1-λp и диаграммой, построенной в осях k2- λp.

Первую диаграмму называют корпусной, она используется, когда исходными для расчета гребного винта служит буксировочное сопротивление корпуса судна, а мощность энергетической установки, необходимая для обеспечения указанной в техническом задании на проектировании скорости судна. Диаграмму, построенную в осях k2- λp, называют машинной. Эта диаграмма используется, когда мощность энергетической установки проектируемого судна задана, а достежимая скорость является искомой величиной.

Простейшей формой задания на проектирование винта, позволяющей однозначно определить геометрические элементы винта в пределах заданной серии, является случай, когда указаны частота вращения n, диаметр винта D, скорость поступательного движения винта Vp, а также требуемый упор или располагаемая мощность на винте Np. Ная эти величины, можно вычислить относительную поступь λp и коэффициент упора k2, определяющие на поле диаграмм единственную точку, которая однозначно определяет шаговое отношение и КПД винта.

К важнейшим составным частям судовых энергетических установок относятся элементы передачи мощности. Под этим понимаются все элементы, участвующие в передаче крутящего момента от коленчатого вала или ротора в турбинах к гребному винту. Типовая дизельная энергетическая установка с двумя среднеоборотными дизелями показана на рисунке. Она включает в себя муфты, одноступенчатый редуктор, валопровод и гребной винт. В энергетических установках с малооборотными дизелями редуктор отсутствует, в турбинных и энергетических установках с высокооборотными дизелями ставят двух- и трехступенчатые редукторы. В дизель- и турбоэлектрических энергетических установках предусмотрены электродвигатели.

Дизель-редукторная энергетическая установка со среднеоборотными дизелями

1 - муфте; 2 - редуктор; 3 - валопровод; 4 - гребной винт

Муфта соединяет узлы, выполняющие вращательные движения. Муфта предназначена для передачи крутящего момента от ведущего вала к ведомому, а также для сглаживания незначительных продольных, радиальных, угловых отклонений и крутильных колебаний. В зависимости от конструкции, назначения и принципа действия различают жесткие (глухие), упругие, фрикционные, гидродинамические и электромагнитные муфты. В судовых установках встречаются все виды муфт в зависимости от типа, мощности и конструкции главного двигателя. В установках, не имеющих передаточных механизмов (например, в малооборотных дизелях), чаще всего применяют жесткие муфты (рис. а, b). Фланцы жесткой муфты в разогретом состоянии запрессованы на вал или на конус и дополнительно зафиксированы призматической шпонкой. В энергетических установках с редуктором связь между редуктором и двигателем, а также с валом гребного винта осуществляется со стороны двигателя чаще всего через соединительную муфту, а со стороны гребного винта - через разобщительную. На рис. е показана упругая муфта. Она состоит из двух оснований, соединенных между собой гибкими прокладками, изготовленными из специальной резины. Такие муфты винтами крепятся к фланцам вала. Они могут передавать моменты независимо от направления вращения. За счет гибких вкладышей возможно выравнивание при перекашивании валов относительно друг друга.

Работа гидродинамических муфт основывается на гидравлическом принципе, схематично показанном на рис. с. Это можно представить себе так: насос, приводимый в движение двигателем, отсасывает жидкость из резервуара, и нагнетает ее в турбину. Жидкость под определенным давлением протекает через лопатки турбины, приводя ее в движение, и затем течет обратно в резервуар. При одинаковых размерах роторов насоса и турбины агрегат работает как гидравлическая муфта, при различных - он превращается в гидротрансформаторную передачу, позволяющую изменять частоту вращения ведомого вала. На практике роторы насосов и турбин находятся в специальном корпусе (рис. d). Действие гидродинамической муфты основывается на энергообмене между двумя полумуфтами (рис. d) с помощью рабочей среды и циркуляции жидкости. Эта циркуляция возникает только в том случае, когда первичная сторона и турбина имеют равные частоты вращения. У гидравлических муфт, используемых на судах, это скольжение составляет от 1,5 до 3%.


Судовые муфты

а, b - жесткие (глухие) муфты: 1 - полумуфта; 2 - фланец; 3 - шпоночная канавка со шпонкой. с - схема гидромуфты: 1, 2 - насосы; 3 - цистерна. d - схема гидромуфты (турбо-муфты); е - гибкая муфта. 4 - фланец; 5 - элемент муфты. f - электромагнитная муфта.

В судовых главных двигателях довольно часто применяют также электромагнитные индукционные скользящие муфты. Принцип действия подобной муфты состоит в использовании вращающего момента, возникающего вследствие воздействия вращающегося магнитного поля на индукционные токи. Внутренняя часть муфты расположена на ведущем вале. Обмотки полюсов через щетки и контактные кольца питаются постоянным током. Внешняя часть муфты имеет обмотку в виде беличьей клетки. Когда внешняя часть, приводимая в движение двигателем через вал, начинает вращаться и возбуждается, она вместе с валом, связанным с ней и ведущим, например, к редуктору, попадает в область вращения магнитного поля. За счет этого в обмотке типа беличьей клетки этой части муфты возникают индукционные токи. Эти токи, взаимодействуя с силовыми линиями магнитного поля, обусловливают возникновение момента вращения, вследствие чего внешняя часть муфты начинает вращаться вместе с внутренней. Таким образом вращение, мощность и момент вращения передаются от двигателя к валу редуктора. Часть муфты с обмоткой типа беличьей клетки должна - аналогично гидродинамической и электромагнитной муфте - вращаться медленнее, чем вращающееся магнитное поле, так как при одинаковой скорости вращения обеих частей не могли бы возникнуть индуктированные токи и передача вращающего момента была бы невозможна. Поэтому и в данном случае имеет место так называемое скольжение муфты. Редуктор главного двигателя должен передавать момент вращения и так изменять его частоту вращения, чтобы она имела оптимальную величину, необходимую для нормальной работы гребного винта. На судах чаще всего применяют механические редукторы, состоящие из зубчатых колес. С введением планетарного редуктора появилась возможность значительно уменьшить размеры и общую массу. В последнее время на новых судах все чаще используют планетарные редукторы в энергетических установках со среднеоборотными дизелями, газовыми или паровыми турбинами.


Механический судовой редуктор

а - суммирующий; b - планетарный. 1 - вал турбины высокого давления; 2 - вал турбины низкого давления; 3, 5, 8, 9 - центральные солнечные шестерни; 4 - водило; 6 - свободный эпицикл; 7 - вал; 10 - тормозной эпицикл; 11 - свободное водило; 12 - полый вал; 13 - зубчатые колеса (3-я ступень); 14 - приводное зубчатое колесо гребного вала; 15 - гребной вал; 16 - гребной винт

Валопровод соединяет приводной двигатель с гребным винтом. Гребной вал, который в зависимости от расположения машинного отделения на судне может состоять из одной или нескольких соединенных через глухие муфты частей, должен передавать момент вращения двигателя на гребной винт. Гребной вал опирается на радиальные подшипники. Концевая часть проходит в уплотнительном сальнике, который предохраняет туннель гребного вала от попадания морской воды. На конусообразной концевой части гребного вала закреплен гребной винт (рис. а). Осевое давление, действующее со стороны гребного винта и передаваемое дальше через вал, воспринимается упорным подшипником. Принцип действия упорного подшипника изображен на рис. d-е. Такой подшипник старого типа состоит из взаимодействующего с опорными поверхностями гребня давления; опорные поверхности залиты металлом. На переднем ходу функционирует одна поверхность гребня давления, на заднем - другая.



Валопровод

а - общий вид; b - полумуфта; с - упорный подшипник; d, e - принцип действия упорного подшипника. 1 - гребной вал; 2 - сальник; 3 - полу- подшипник; 6 - переборочный сальник; 7 - муфта; 4 - промежуточный вал; 5 - опорный упорный подшипник; 8 - упорный вал

Гребной винт в настоящее время является почти единственным типом движителя. Он состоит из нескольких лопастей, радиально укрепленных на ступице. Во время вращения гребного винта вокруг своей оси на лопастях возникает сила давления, которая в конечном итоге обусловливает движение судна. Характерной величиной гребного винта является шаг. Его теоретическое значение, т. е. без учета скольжения, зависит от угла атаки лопасти гребного винта. Для достижения хорошего взаимодействия между главным двигателем и гребным винтом необходимо, чтобы параметры и особенно шаг винта имели определенные значения. Оптимальное взаимодействие будет достигнуто лишь при определенном состоянии нагрузки судна и при определенных погодных условиях (ветер, волнение и т. д.). Если эти значения отклоняются от заданных, то взаимодействие двигателя и гребного винта не приносит результата, заложенного в проекте. На практике это означает, что взаимодействие двигателя и относящегося к нему гребного винта будет наиболее эффективным, например, при полной нагрузке судна и при хорошей погоде. На судах, работающих в изменяющихся условиях, таких как буксиры или рыболовные суда (свободный ход, ход с тралом), движитель должен быть приспособлен к соответствующим условиям работы. Вместе с тем стало бы возможным одновременное использование полной мощности приводного двигателя при различных состояниях его нагрузки.


Судовой движитель

а - гребной винт с неподвижными лопастями; b - винт регулируемого шага; с - гребной винт в насадке; d - соосные гребные винты

Лопасти винта фиксированного шага отлиты вместе со ступицей или прочно привинчены к ней (см. рис. а). Изменять шаг можно на гребных винтах регулируемого шага ВРШ (рис. b). Лопасти гребного винта расположены на криволинейных дисках и укреплены на ступице винта так, что они могут поворачиваться. Применение ВРШ позволяет использовать нереверсивные двигатели в качестве судовых. Они могут работать и при постоянной частоте вращения, так как в этом случае можно осуществлять все маневры путем изменения угла атаки, т. е. от самого большого шага винта на переднем ходу, когда лопасти находятся в таком положении, что несмотря на вращение гребного винта, тяга не появляется (и поэтому судно не движется), до положения лопастей, соответствующего заднему ходу. Вначале ВРШ применяли только на буксирах, рыболовных и специальных судах, и только позднее их начали устанавливать на судах торгового флота. За счет установки ВРШ достигаются большая экономичность энергетических установок, возможность использования полной мощности двигателя при различной нагрузке, а также возможность применения нереверсивных ДВС или паровых турбин без турбин заднего хода. К преимуществам следует также отнести и возможность осуществления заднего хода при полной мощности двигателя.

Иногда на судах (особенно на судах речного флота) гребной винт устанавливают в насадке (см. рис. с). Такая конструкция позволяет улучшить уелввия работы гребного винта и повысить КПД. Диаметр судового движителя может достигать 9 м, а масса - 50 т. Гребные винты регулируемого шага имеют меньший диаметр. Преобладающее число судов имеет только один гребной винт, устанавливаемый в диаметральной плоскости судна. Встречаются также двухвинтовые суда, которые приводятся в движение либо от двух малооборотных, либо от четырех среднеоборотных дизелей, причем в последнем случае один гребной винт приводится в движение двумя двигателями. В редких случаях строятся трехвинтовые суда, например торпедные катера, на которых два бортовых движителя, приводятся в движение от высокооборотных дизелей через редукторную передачу, а средний гребной винт - от газовой турбины. Некоторые большие пассажирские суда и боевые корабли, например авианосцы, снабжаются четырьмя симметрично расположенными гребными винтами. В условиях постоянно растущих мощностей главных двигателей требуются гребные винты очень больших диаметров, что приводит к технологическим и производственным трудностям. Чтобы противодействовать этому и улучшить КПД, пытаются «устанавливать движители, вращающиеся в противоположных направлениях (см. рис. d). В этом случае необходимы сложные устройства, такие как полые гребные валы и специальные редукторные передачи. Наряду с гребными винтами в последнее время применяют крыльчатые движители. Они состоят из нескольких вращающихся навесных лопаткообразных лопастей изменяющегося профиля, укрепленных на плоском рабочем колесе. Рабочее колесо приводится в движение главным двигателем через гипоидный зубчатый редуктор. Вращающиеся лопаткообразные лопасти создают силу упора, действующую в направлении, зависящем от угла установки лопастей, как показано на рис. а. Во время работы движителя можно плавно изменять угол атаки лопастей.



Крыльчатый движитель

а - принцип действия; b - движитель Фойта-Шнейдера (вид сбоку); с - движитель Фойта Шнейдера (вид сверху); d - буксир с движителем Фойта-Шнейдера в носовой части судна; е - буксир с движителем Фойта-Шнейдера в кормовой части судна

I - «Стоп»; 2 - «Передний ход»; 3 - «Задний ход»; 4 - «Поворот на левый борт»; 5 - «Поворот на левый борт» (на заднем ходу); 6 - «Поворот на правый борт»; 7 - управляющий механизм; 8 - привод; 9 - лопасти; 10 - распределительные рычаги и тяги

Крыльчатый движитель может служить как в качестве пропульсивного движителя, так и в качестве руля. Судно, оснащенное двумя симметрично расположенными движителями, может двигаться в любом направлении. Недостатком является частая повреждаемость лопаткообразных лопастей, выступающих ниже днища судна. Крыльчатый движитель в основном используется на портовых буксирах и лоцманских судах, а также на судах портовой службы. Мощность подобных установок невелика: максимально она составляет 2200 кВт.

Движителем называют такое судовое устройство, которое, используя работу двигателя, создает в воде упор - силу, способную двигать судно в заданном направлении.

Движители судов с механическим двигателем делятся на лопастные и водометные .

К числу лопастных судовых движителей относятся гребные винты , крыльчатые движители и гребные колеса , создающие силу упора за счет отбрасывания своими лопастями струи воды в сторону, противоположную движению судна.

Водометные движители создают упор за счет отбрасывания воды, забранной специальным насосом. Так как и лопастные, и водометные движители создают движущую силу за счет реакции отбрасываемых назад масс воды, их называют реактивными. Среди судовых движителей наибольшее распространение получили гребные винты.

Гребной винт (рис. 130) имеет от трех до шести лопастей (чаще четыре-пять), установленных радиально на ступице.

Поверхности лопастей, обращенные в нос судна, называют засасывающими, обращенные в корму - нагнетающими.

В зависимости от направления вращения образующей винтовой поверхности различают винты правого и левого вращения. Если взгляд наблюдателя направлен перпендикулярно к диску винта, то у винта правого вращения правая кромка лопасти, расположенной вертикально вверх, будет находиться от наблюдателя дальше, чем левая. У винта левого вращения -

Рис. 130. Гребной винт (а) и схема его действия (б).

1 - ступица; 2 - лопасть; 3 - обтекатель. V в - окружная скорость элемента

лопасти; ν - скорость поступательного перемещения гребного винта вместе с

судном; V - результирующая скорость от сложения скоростей Vв и ν; α - угол между результирующей скоростью V и хордой элемента лопасти (угол атаки); R - подъемная сила, возникающая на элементе лопасти; Р - упор гребного винта (горизонтальная составляющая силы R); Т - окружная составляющая сил, действующих на гребной винт

Гребные винты изготовляют из нержавеющей стали, бронзы, латуни и их сплавов, а также из капрона, нейлона и стеклопластика (в основном для малых судов).

Гребной винт характеризуют следующие геометрические элементы: диаметр - определяется в зависимости от возможной глубины погружения оси гребного вала (обычно, диаметр гребного винта не превышает 70 % осадки судна в полном грузу); наиболее крупные винты имеют диаметр до 9-10 м; дисковое отношение - отношение площади всех лопастей винта к площади диска винта; может быть больше единицы, но у винтов морских транспортных судов оно обычно равно 0,45-0,60; шаг винта - шаг винтовой поверхности, образующей нагнетающую поверхность лопасти винта.

На засасывающей стороне лопасти при быстром вращении винта благодаря увеличению скорости набегающего потока воды создается разрежение, причем по мере увеличения скорости вращения давление может понизится на столько, что даже в холодной воде начнется образование пузырьков воздуха (известно, что с уменьшением давления температура кипения воды понижается).

Рис. 131. Схема действия Рис. 132. Пропульсивная наделка

направляющей насадки на руль

Такое вскипание холодной воды на засасывающей стороне лопасти называется кавитацией . Начальная стадия кавитации очень опасна для гребных винтов, так как возникающие при вскипании воды пузырьки воздуха, попав в зону более высокого давления, мгновенно конденсируются и производят сильнейшие гидравлические удары по лопасти винта, вызывая эрозию (местное изъязвление поверхности). В этих условиях работа гребного винта недопустима. Однако по мере дальнейшего увеличения скорости вращения винта зона кавитации распространяется уже на всю лопасть и даже выходит за ее пределы - наступает так называемая вторая стадия кавитации, которая не представляет опасности для прочности винта, но зато несколько уменьшает его КПД.

Чтобы устранить кавитацию, увеличивают ширину (площадь) лопастей и глубже погружают сам винт; кроме того, делают гребные винты переменного шага (уменьшая его к комлю и концам лопасти). При проектировании быстроходных винтов, если устранить кавитацию полностью по техническим причинам невозможно, создают условия полностью развитой кавитации (во второй стадии).

Для повышения эффективности гребных винтов применяют направляющие насадки и пропульсивные наделки на руль.

Направляющие насадки бывают неподвижными и поворотными и применяются сейчас не только на малых судах и буксирах, где они особенно эффективны, но и на крупных транспортных судах. Насадка, имеющая в сечении профиль, аналогичный профилю крыла, создает при движении воды дополнительный упор, как это видно из схемы сил, приведенной на рис. 9.29. Кроме того, насадка улучшает условия - винта, в результате чего увеличивается скорость подтекающей воды, уменьшаются концевые потери от перетекания воды через край лопасти и, следовательно, повышается КПД винта (до 20-30 %). Применение направляющей насадки увеличивает скорость на 2-4 %.

Важным преимуществом насадки является выравнивание поля скоростей в диске винта, что уменьшает нагрузки на валопровод.

Пропульсивная наделка на руль (рис. 132) упорядочивает поток воды за ступицей и повышает КПД, а также улучшает условия работы руля.

Винт регулируемого шага (ВРШ) имеет лопасти, поворачивающиеся вокруг их вертикальной оси. Их можно устанавливать под любым углом, образуя шаг, необходимый для данного режима работы судна. ВРШ позволяет не только наивыгоднейшим образом использовать двигатель судна в разных условиях эксплуатации, но и удерживать его на месте, не выключая двигателя, если все лопасти расположены в плоскости диска винта в так называемом нейтральном положении, или осуществлять реверс (задний ход), не меняя направления вращения вала двигателя. Последнее обстоятельство особенно важно при использовании нереверсируемых главных двигателей (газовых и паровых турбин), так как позволяет отказаться от необходимых в этом случае турбин заднего хода или реверсивных муфт.

ВРШ состоит из ступицы, поворотных лопастей, механизма поворота лопастей, расположенного в ступице, механизма изменения шага (МИШ) в кормовой оконечности судна и привода механизма поворота лопастей, располагаемого в валопроводе.

Управляют МИШ дистанционно из рулевой рубки и с крыльев ходового мостика.

Механизм поворота лопастей (рис. 133) состоит из ползуна и шатунов, соединенных с кривошипными дисками, на которых закреплены лопасти. Усилие для поворота лопастей передается через шток в гребном валу на ползун, а от него через шатуны - кривошипным дискам, которые, вращаясь, поворачивают лопасти.

Рис. 133. Схема ВРШ.

1 - ползун; 2 - шатун; 3 - кривошипный диск; 4 - шток; 5 - поршень;

6 - золотниковый регулятор; 7 - привод управления; 8 - масляный насос;

9 - электродвигатель; 10 - масляная цистерна

Движение штоку, на конце которого расположен поршень, передается давлением масла (его можно подавать под одну или другую сторону поршня, в зависимости от необходимого направления изменения шага). Рабочее давление масла создается масляным насосом высокого давления (2,0 МПа или 20 кгс/см 2), работающим от гребного вала или специального электромотора. Направление подачи масла изменяется золотниковым устройством, привод которого связан с постом управления в рулевой рубке.

Применение ВРШ позволяет за счет повышения КПД двигателя в разных условиях эксплуатации снизить на 10-15 % расход топлива и увеличить в среднем на 2-3 % среднюю рейсовую скорость. Возможность быстрого перехода с переднего на задний ход улучшает маневренные качества судна и примерно в 1,5 раза сокращает выбег при экстренном торможении, повышая тем самым безопасность плавания. Важным преимуществом ВРШ является и то, что его съемные лопасти можно легко заменять, не выводя судно из эксплуатации.

К недостаткам ВРШ относятся сложность конструкции, более высокая стоимость и несколько меньший (на 1-3 %), чем у винтов фиксированного шага, КПД из-за большего диаметра ступицы, в которой размещается механизм поворота. Однако, несмотря на эти недостатки, ВРШ является перспективным типом движителя не только для промысловых и технических, но и для крупных транспортных судов: на крупнотоннажных танкерах установлен ВРШ диаметром 7,5 м, на атомном лихтеровозе - 6,8 м, на сухогрузном газотурбоходе - диаметром 5,6 м. Диаметр наиболее крупных ВРШ достигает 9 м.


Рис. 134. Крыльчатый движитель и схема его работы

Крыльчатый движитель (рис. 134) представляет собой диск, вмонтированный заподлицо с днищевой обшивкой и приводящийся во вращение вокруг вертикальной оси судовым двигателем. По окружности диска перпендикулярно к нему расположены четыре - восемь погруженных в воду лопастей, каждая из которых вращается вместе с диском, а также вокруг своей оси. Путем соответствующей установки привода управления поворотом каждой лопасти вокруг своей оси можно при неизменном направлении вращения диска создать упор в любом направлении (см. схему на рис. 134). Поэтому суда, оборудованные крыльчатым движителем, не имеют рулей. Несмотря на сложность изготовления и невысокий КПД, крыльчатые движители незаменимы на тех судах, для которых необходима высокая маневренность при малых скоростях движения (на плавучих кранах, буксирах и пр.). Управление крыльчатым движителем осуществляется из ходовой рубки и с крыльев ходового мостика.

Изобретение относится к судостроению, в частности к приводной системе гребного винта, а также к способу обеспечения движения судна и управления им по курсу. Система содержит азимутальную силовую установку (6) и приводные средства для разворота азимутальной силовой установки (6) с целью управления судном по курсу. Приводные средства содержат электродвигатель (20) для разворота указанной азимутальной силовой установки (6) через механическую силовую передачу (40), связанную с указанным электродвигателем. Источник питания (30) обеспечивает подачу на указанный электродвигатель (20) электрической энергии. Модуль (34) управления осуществляет управление работой электродвигателя (20) посредством управления указанным источником питания (30). Система включает в себя также датчик (16) для определения углового положения указанной азимутальной силовой установки (6). Модуль (34) управления выполнен с возможностью совместной обработки команды рулевого управления, поступающей от устройства (38) рулевого управления, и позиционной информации об угловом положении, поступающей от указанного датчика (16), и с возможностью управления работой указанного электродвигателя (20) на основе результатов указанной обработки. Изобретение направлено на упрощение конструкции приводной системы, повышение ее экономичности и безопасности. 2 н. и 10 з.п.ф-лы, 5 ил.

Область техники, к которой относится изобретениеНастоящее изобретение относится к приводной системе гребного винта надводного судна и в особенности к системе, которая включает в себя силовую установку, выполненную с возможностью разворота относительно корпуса судна. Изобретение относится также к способу обеспечения движения судна и управления им по курсу.Уровень техникиВ большинстве случаев корабли, или суда (включая пассажирские суда и паромы, грузовые суда, лихтеры, нефтеналивные танкеры, ледоколы, суда прибрежного плавания, военные корабли и т.д.), приводятся в движение посредством полезной тяги, создаваемой вращающимся гребным винтом или несколькими винтами. Управление судами по курсу обычно осуществляется посредством отдельного рулевого устройства.Традиционно приводы гребного винта, т.е. установки для обеспечения его вращения, включали размещенный внутри судового корпуса судовой двигатель (дизельную, газовую или электрическую силовую энергетическую установку). С двигателем связан гребной вал, проходящий через дейдвудное устройство, обеспечивающее уплотнение гребного винта в месте выхода из корпуса. Сам гребной винт находится на противоположном конце гребного вала, т.е. на конце, удаленном от корпуса. Гребной вал может быть связан с судовым двигателем либо непосредственно, либо через зубчатую передачу (редуктор). Подобная схема используется на большинстве надводных судов для того, чтобы развить тягу, необходимую для движения судна.Недавно начали появляться суда с гребными валами, в которых двигатель (обычно электрический), обеспечивающий выработку необходимой мощности для гребного винта, вместе с необходимыми передачами находится вне корпуса судна внутри специальной камеры или силовой гондолы, выполненной с возможностью вращения относительно корпуса. Подобный узел может быть развернут относительно корпуса, и это означает, что он может быть использован вместо отдельного рулевого устройства также для руления судном (управления по курсу). Более конкретно, силовая гондола, содержащая двигатель, устанавливается на специальном трубчатом или каком-либо ином валу с возможностью разворота относительно корпуса судна; при этом данный вал проходит сквозь днище корпуса. Более подробно подобная судовая установка описана в патенте Финляндии №76977, принадлежащем заявителю данной заявки. Подобные установки получили название азимутальных силовых установок, причем заявитель данной заявки выпускает азимутальные установки этого типа под торговым наименованием AZIPOD.Было обнаружено, что, помимо выгод, обусловленных отказом от длинного гребного вала и отдельного рулевого устройства, оборудование описанного типа дает также фундаментальное преимущество в отношении управляемости судном по курсу. Оказалось также, что достигается и экономия энергии. Применение азимутальных судовых установок на различных надводных судах в последние годы стало обычным и предполагается, что рост их популярности продолжится.В соответствии с известными решениями устройства разворота азимутальных судовых установок обычно выполнялись таким образом, что зубчатое кольцо баллера руля или какая-либо другая кромка баллера прикреплялась к трубчатому валу, который образует ось разворота установки. Баллер разворачивается с помощью гидродвигателей, специально приспособленных для взаимодействия с баллером. Движение разворота баллера может быть остановлено в заданном положении, когда с помощью упомянутых гидродвигателей не производится выполнение никаких команд рулевого управления. По этой причине в гидравлической системе всегда поддерживается рабочее давление, даже когда судно движется по прямой.В соответствии с одним известным решением используются четыре гидродвигателя, которые установлены с возможностью взаимодействия с поворотным ободом. Приводная система, которая обеспечивает гидравлическое давление, необходимое для работы гидродвигателей, содержит также гидравлический насос и электродвигатель, приводящий его во вращение. Чтобы повысить эксплуатационную надежность вращающихся зубчатых колес, гидродвигатели могут быть сгруппированы в двух отдельных гидравлических контурах, в каждом из которых используются собственные компоненты, обеспечивающие создание гидравлического давления.Применение гидравлической системы было обусловлено, в частности, тем, что гидравлика позволяет получить довольно высокий вращательный момент при относительно низкой скорости вращения, необходимый для разворота азимутальной силовой установки. Кроме того, при использовании гидравлики управление судном по курсу путем разворота силовой установки может быть осуществлено довольно просто и достаточно точно с помощью традиционных клапанных распределителей и других соответствующих компонентов гидравлики. Как уже было упомянуто, одно из преимуществ, достигаемых в случае применения гидравлики, заключается в возможности быстро и точно остановить движение разворота силовой установки в заданном положении. При этом установка может удерживаться в таком положении, что рассматривается в качестве важного условия управления судном по курсу.Однако было обнаружено, что с известной гидравлической системой, которая сама по себе может считаться эффективной и надежной, связан целый ряд проблем и недостатков. Для того чтобы реализовать известную систему разворота, суда должны оснащаться специальной, дорогой и сложной системой гидравлики, включающей в себя большое количество различных компонентов, хотя вращение самого гребного винта обеспечивается с помощью электродвигателя. Это, помимо прочего, означает потерю части выигрыша, обусловленного более эффективным использованием внутреннего объема судна, достигаемого в случае внешней азимутальной силовой установки. Кроме того, гидравлические системы требуют регулярного и довольно частого обслуживания и проверки, что ведет к повышению эксплуатационных затрат и может даже привести к снятию судна с эксплуатации на срок проведения мероприятий по его обслуживанию. Еще один недостаток гидравлических систем состоит в том, что для них характерна тенденция к утечкам масла или другой гидравлической жидкости, особенно из различных шлангов, стыков и зон уплотнений. Помимо дополнительных издержек, обусловленных утечками и, следовательно, дополнительным расходом гидравлической жидкости, это создает также проблемы охраны и очистки окружающей среды. Кроме того, утечки могут приводить к серьезным проблемам безопасности, поскольку поверхности, смоченные гидравлической жидкостью, становятся скользкими и вследствие этого опасными, кроме того, утечки гидравлической жидкости могут повышать пожароопасность. Внутреннее давление в гидравлической системе является довольно высоким, так что утечка в шланге может привести к возникновению тонкой струи масла под высоким давлением, которая может нанести серьезные повреждения обслуживающему персоналу. В процессе своего функционирования гидравлическая система может создавать значительные шумы, что, помимо прочего, ухудшает условия работы обслуживающего персонала. Этот шум является непрерывным, поскольку система должна быть в рабочем состоянии все то время, пока судно находится в движении. Далее, при использовании гидравлической системы движение разворота силовой установки происходит только с постоянной (т.е. единственной) скоростью. Однако существуют ситуации, в которых желательно обеспечить, по меньшей мере, еще одну скорость разворота.Сущность изобретенияТаким образом, основная задача, решаемая настоящим изобретением, заключается в устранении недостатков известной технологии и в разработке нового варианта обеспечения разворота азимутальной силовой установки относительно корпуса судна.Одна из задач, решаемых настоящим изобретением, состоит в том, чтобы устранить необходимость использования отдельной гидравлической системы и избежать при осуществлении разворота азимутальной силовой установки всех проблем, связанных с применением такой системы.Еще одной задачей является решение проблемы повышения надежности и экономичности оборудования, применяемого для осуществления разворота азимутальной силовой установки, по сравнению с известными решениями.Следующей задачей является решение проблемы снижения уровня шума, создаваемого оборудованием при развороте азимутальной силовой установки, по сравнению с известными решениями.Еще одна задача состоит в разработке решения, позволяющего изменять и/или регулировать скорость разворота азимутальной силовой установки.Дальнейшей задачей является решение проблемы снижения экологического риска, связанного с эксплуатацией оборудования для разворота азимутальной силовой установки, и повышения общего уровня чистоты и безопасности по сравнению с известными решениями.Изобретение основано на новом принципе, заключающемся в том, что разворот азимутальной силовой установки обеспечивается связанным с ней напрямую электроприводом, который управляется от модуля управления, выполненного с возможностью обрабатывать как команды рулевого управления судном, так и информацию, поступающую от датчика, который определяет угловое положение азимутальной силовой установки.Более конкретно, в соответствии с настоящим изобретением приводная система гребного винта для обеспечения движения надводного судна и управления им по курсу содержит азимутальную силовую установку, в состав которой входят силовая гондола, расположенная вне корпуса судна ниже ватерлинии, первый электродвигатель или аналогичный приводной агрегат, установленный внутри указанной гондолы для обеспечения вращения гребного винта, связанного с указанной гондолой, и узел вала, связанный с указанной гондолой и несущий ее с возможностью разворота гондолы относительно корпуса судна, а также приводные средства для обеспечения разворота указанной азимутальной силовой установки относительно корпуса указанного судна для управления судном по курсу в соответствии с командой рулевого управления, поступающей от устройства рулевого управления судном.Одна из главных отличительных особенностей приводной системы по изобретению состоит в том, что приводные средства содержат второй электродвигатель для разворота указанной азимутальной силовой установки через механическую силовую передачу, связанную со вторым электродвигателем. При этом система дополнительно содержит источник питания для подачи электрической энергии на указанный второй электродвигатель и модуль управления для управления работой указанного второго электродвигателя посредством управления указанным источником питания.Как уже упоминалось, модуль управления выполнен с возможностью совместной обработки команды рулевого управления, поступающей от указанного устройства рулевого управления судном, и позиционной информации об угловом положении, поступающей от указанного датчика, и с возможностью управления работой указанного второго электродвигателя на основе результатов указанной обработки.В соответствии с одним из предпочтительных вариантов реализации изобретения в состав приводных средств, или силовой передачи, с помощью которой обеспечивается разворот азимутальной силовой установки, входят круговой зубчатый обод, закрепленный на узле вала, а также шестерня, червяк или аналогичный зубчатый компонент, выполненные с возможностью взаимодействия с указанным зубчатым ободом. В этом случае поворот зубчатого компонента производится посредством редуктора, установленного между зубчатым ободом и вторым электродвигателем.Желательно также снабдить систему по изобретению соответствующим средством торможения для обеспечения остановки разворота азимутальной силовой установки и удержания ее в заданном положении, а также обеспечить функциональную связь между этим средством торможения и модулем управления с целью передачи на это средство команд управления. В соответствии с одним из предпочтительных вариантов средство торможения, с помощью которого регулируется скорость разворота, функционально связано с инвертором переменного тока (ПТ-инвертором), который входит в состав источника питания. Указанное средство торможения может представлять собой тормоз, например фрикционный или магнитный, выполненный отдельно от второго электродвигателя.Решение задач, поставленных перед изобретением, предусматривает также создание нового способа обеспечения движения и управления по курсу надводным судном. Согласно данному способу судно приводят в движение посредством азимутальной силовой установки, содержащей силовую гондолу, расположенную вне корпуса судна ниже ватерлинии, первый электродвигатель или аналогичный приводной агрегат, установленный внутри гондолы для обеспечения вращения гребного винта, связанного с указанной гондолой, и узел вала, связанный с гондолой и несущий ее с возможностью разворота гондолы относительно корпуса судна. При этом азимутальную силовую установку разворачивают относительно корпуса указанного судна в соответствии с командой рулевого управления, поступающей от устройства рулевого управления судном.Основной отличительной особенностью способа по изобретению является наличие в нем следующих операций:посредством датчика, функционально связанного с модулем управления, определяют угловое положение азимутальной силовой установки по курсу,в модуле управления производят обработку информации, содержащейся в команде рулевого управления, поступившей от указанного устройства управления, и информации об угловом положении, поступающей от указанного датчика,основываясь на результатах указанной обработки, разворачивают азимутальную силовую установку через механическую силовую передачу, связанную с вторым электродвигателем, иподают электрическую мощность на второй электродвигатель также на основе результатов указанной обработки.Разворот азимутальной силовой установки предпочтительно осуществляют посредством кругового зубчатого обода, шестерни или червяка, выполненных с возможностью взаимодействия с указанным зубчатым ободом, и редуктора, установленного между указанным зубчатым ободом и указанным вторым электродвигателем.Питание указанного второго электродвигателя целесообразно осуществлять через ПТ-инвертор, а требуемую регулировку скорости разворота указанной азимутальной силовой установки производить посредством соответствующей регулировки электрической мощности, поступающей от указанного ПТ-инвертора. В этом случае остановку разворота указанной азимутальной силовой установки и/или ее удержание в развернутом положении осуществляют с помощью средства торможения, управляемого от ПТ-инвертора. В одном из вариантов предлагаемого способа торможение разворота указанной азимутальной силовой установки осуществляют посредством электрического генератора, связанного с азимутальной силовой установкой через механическую силовую передачу, с подачей генерируемой при этом электрической энергии в электрическую сеть. При этом в качестве электрического генератора используют указанный второй электродвигатель, работающий в режиме генератора.Кроме того, согласно предпочтительному варианту реализации способа по изобретению обработку указанной команды рулевого управления и указанной позиционной информации в модуле управления производят посредством устройства обработки данных, такого как микропроцессор или модуль управления мощностью.Настоящее изобретение обеспечивает получение нескольких существенных преимуществ. Благодаря ему становится возможным отказаться от известной системы, основанной на использовании гидравлики, и тем самым устранить названные выше проблемы, связанные с таким использованием. Суммарная экономия, достигаемая применением электродвигателя, значительна, а требования по обслуживанию практически отсутствуют. Система разворота на основе электропривода является, кроме того, высоконадежной. На современных судах обеспечение электроэнергией не является проблемой, причем она используется во многих частях судна (в частности, азимутальная силовая установка также содержит электродвигатель). Следовательно, устраняется необходимость применения отдельной (дорогостоящей) гидравлической системы. Появляется также возможность использования электропривода, обеспечивающего разворот азимутальной силовой установки с регулируемой скоростью.Перечень фигур чертежейДалее настоящее изобретение, а также его различные аспекты и преимущества будут подробно описаны на примере предпочтительных вариантов его выполнения и со ссылками на прилагаемые чертежи, где сходные компоненты обозначены на разных фигурах теми же числовыми обозначениями.На фиг.1 дана упрощенная принципиальная схема одного из вариантов выполнения системы по настоящему изобретению.На фиг.2 приведена блок-схема системы по фиг.1.На фиг.3 изображена силовая установка, смонтированная на судне.На фиг.4 в форме диаграммы представлено оборудование, входящее в состав системы углового перемещения в соответствии с другим вариантом выполнения изобретения.На фиг.5 дан график последовательности операций, выполняемых системой углового перемещения по настоящему изобретению.Сведения, подтверждающие возможность осуществления изобретенияНа фиг.1 в виде упрощенной принципиальной схемы, а на фиг.2 в виде блок-схемы представлен один из вариантов системы углового перемещения по настоящему изобретению. На фиг.3 изображена азимутальная силовая установка 6, размещенная на судне 9. Более конкретно, на фиг.1 представлена азимутальная силовая установка 6, в состав которой входит герметичная силовая гондола 1. Внутрь гондолы 1 помещен первый электродвигатель 2 (электродвигатель гребного вала), в качестве которого может быть применен любой подходящий двигатель известного типа. Электродвигатель 2 связан известным способом посредством гребного вала 3 с гребным винтом 4.Согласно одному из альтернативных вариантов внутри указанной гондолы 1 может быть предусмотрена зубчатая передача, входящая в состав установки и расположенная между указанным электродвигателем 2 и гребным валом 4. В одном из вариантов с каждой гондолой связан более чем один гребной винт. В таком случае может иметься, например, два гребных винта, один из которых расположен впереди, а другой позади гондолы.Указанная гондола 1 установлена с возможностью поворота вокруг вертикальной оси и связана с не изображенным на фиг.1 корпусом судна (см. также фиг.3) посредством, по существу, вертикального узла 8 вала (подшипники этого узла на фиг.1 не изображены; один из альтернативных вариантов его выполнения приведен в указанном патенте Финляндии №76977, который включен в данную заявку посредством ссылки на него). Указанный узел 8 (представляющий собой, по сути, полый вал трубчатой конструкции) может иметь достаточно большой диаметр, чтобы обеспечить обслуживание двигателя, расположенного под этим узлом, в гондоле, а также зубчатой передачи, которая может входить в состав установки, и гребного вала.Зубчатый обод 10 или функционально аналогичный зубчатый обод баллера является круговым, т.е. расположенным по всей окружности указанного узла 8 вала; он соединен с указанным узлом 8 для передачи на него мощности, необходимой для осуществления поворота этого узла относительно корпуса судна. Когда узел 8 вала поворачивается, вместе с ним разворачивается и силовая установка 6. В варианте, показанном на фиг.1, комплект оборудования, входящего в силовую передачу 40 для осуществления поворота указанного зубчатого обода 10, включает в себя шестерню 12, коническую зубчатую передачу 14, муфту 24, зубчатый редуктор 22 и второй электродвигатель 20, а также валы 21, 23 между названными элементами. Показано также средство 26 торможения, установленное на валу 21, и вентилятор для охлаждения двигателя 20. В изображенном варианте средство 26 торможения представляет собой дисковый тормоз с соответствующим приводом. Следует отметить, что в рамках настоящего изобретения не все из перечисленных компонентов являются обязательной частью указанной передачи 40; соответственно, некоторые из них могут быть опущены или заменены другими компонентами.Электрическая энергия поступает на электродвигатель 20 по кабелю 28 от ПТ-инвертора 30 (инвертора переменного тока), который работает как источник питания (мощности). Принципы работы инвертора должны быть известны специалисту в данной области техники, поэтому в их изложении нет необходимости. Достаточно отметить, что основными силовыми компонентами инвертора являются выпрямитель, промежуточный контур постоянного тока и инвертирующая схема. В настоящее время инверторы переменного тока находят широкое применение, в том числе и в качестве входных устройств для двигателей переменного тока. Особенно эффективны они для применения в различных управляемых электроприводах. Наиболее распространенными среди ПТ-инверторов являются ШИМ-инверторы, в которых используется широтно-импульсная модуляция и в которых имеется промежуточный контур регулировки напряжения.Использование ПТ-инвертора эффективно, в том числе и потому, что он позволяет регулировать угловую скорость поворотного оборудования, входящего в комплект 40, и следовательно, скорость вращения указанного узла 8. В соответствии с одним из вариантов используется, по меньшей мере, две различные скорости. Согласно другому варианту скорость вращения может регулироваться в пределах некоторого интервала скоростей, например от 0 до номинальной скорости вращения.Управление работой ПТ-инвертора 30 обеспечивается модулем 34 управления (таким, как сервопривод рулевого управления) по линии 32. Указанный модуль 34 управления, в свою очередь, функционально связан с устройством рулевого управления, например со штурвалом 38, установленным на капитанском мостике или в другой соответствующей части судна. Команды управления по курсу, выдаваемые вручную, т.е. поворотом штурвала, преобразуются, например, посредством отдельных аналоговых сервомеханизмов в команды рулевого управления. В соответствии с другим вариантом команды управления с помощью соответствующего преобразователя, связанного со штурвалом, преобразуются в цифровые курсовые сигналы, которые по линии 36 посылаются на модуль 34 управления.Указанный модуль 34 управления использует информацию, содержащуюся в командах управления по курсу, формируемых штурвалом 36, для управления ПТ-инвертором. Инвертор, в свою очередь, обеспечивает питание двигателя 20 током. Результирующее вращение двигателя (с заданной скоростью) в направлении по или против часовой стрелки приводит к желаемому изменению углового положения указанного узла 8 вала и, следовательно, силовой установки 6.Модуль 34 управления может представлять собой любое подходящее устройство обработки данных и/или управляющее устройство, сервопривод рулевого управления (например, так называемый аналоговый сервомеханизм) или другое соответствующее устройство, способное осуществлять обработку команд рулевого управления и другой информации, связанной с рулением (которая будет рассмотрена далее), а также управлять ПТ-инвертором или аналогичным силовым модулем на основе результатов указанной обработки.На фиг.1 и 2 показан также датчик 16 углового положения, механически связанный с азимутальной силовой установкой 6 (в частном случае он установлен на зубчатом ободе 10) и предназначенный для определения угла поворота указанного узла 8. Для этой цели могут быть использованы различные датчики, которые сами по себе известны. Так, датчик 16 может быть построен на основе фотооптического датчика, так называемого сельсина, или датчика, основанного на системах машинного или компьютерного зрения, способных измерять угол поворота. Следует заметить, что конкретный тип датчика 16 не оказывает существенного влияния на воплощение настоящего изобретения; важно лишь, чтобы с помощью применяемого датчика надежно определялось направление, по которому ориентирована азимутальная силовая установка.Датчик 16 углового положения имеет функциональную связь 18 с модулем 34 управления для того, чтобы передавать на этот модуль позиционные сигналы. Указанная связь 18 может представлять собой, например, кабель или радиоканал. Система по изобретению может также содержать аналого-цифровой преобразователь 35 (АЦП) для преобразования аналогового позиционного сигнала, поступающего от датчика 16, в цифровой формат, в котором возможна его обработка в модуле 34 управления (если данный модуль требует выполнения подобного преобразования).Модуль 34 управления выполнен с возможностью совместной обработки в процессоре 33 или в аналогичном ему устройстве обработки данных информации, которую он получил от указанного датчика 16 положения, с командами рулевого управления, полученными от указанного устройства 38 рулевого управления, и с возможностью управления на основе полученных результатов работой ПТ-инвертора 30 или аналогичного силового модуля, как это показано на фиг.2.На фиг.1 и 2 представлено уже упоминавшееся средство 26 торможения. Оно предназначено для того, чтобы останавливать движение поворота силовой установки 6 в заданном положении и удерживать установку в зафиксированном положении все то время, пока не выдается никаких команд рулевого управления. Управление функционированием указанного средства 26 торможения (в частности, временными характеристиками и усилием при торможении и удержании) может осуществляться благодаря наличию функциональной связи между этим средством и модулем управления, осуществляющим управление системой. Согласно предпочтительному варианту, изображенному на фиг.2, управление работой указанного средства 26 торможения обеспечивается с помощью указанного ПТ-инвертора 30, который, в свою очередь, получает команды рулевого управления от модуля 34 управления. Описанный вариант обеспечения торможения позволяет использовать для управления торможением также информацию, исходящую от датчика 16. В результате ориентация гребного винта, т.е. направление тягового усилия, которое обеспечивает движение судна, может быть отрегулирована с высокой точностью.Средство торможения может представлять собой механический фрикционный тормоз (в частности, дисковый или барабанный тормоз, тормозные башмаки) или же магнитный тормоз, который может быть размещен в соответствующей части комплекта оборудования силовой передачи 40 или даже обеспечивать торможение/удержание непосредственно узла 8 вала силовой установки 6. В соответствии с одной из возможных альтернатив указанный редуктор 22 или шестерня, непосредственно взаимодействующая с зубчатым ободом 10, выполняются таким образом, чтобы обеспечить торможение любого углового перемещения, исходящего от силовой установки 6, но способствовать движению поворота, исходящего от указанного двигателя 20. Другими словами, эти компоненты выполнены таким образом, что допускают передачу вращательного движения только в одном направлении.Еще один возможный вариант состоит в том, чтобы использовать для торможения/удержания сам электродвигатель 20. В этом случае с помощью указанного ПТ-инвертора 30 и указанного модуля 34 управления обеспечивается управление усилием, формируемым двигателем 20, таким образом, чтобы достичь получения желательного контролируемого эффекта торможения/удержания. Торможение/удержание может полностью обеспечиваться с помощью электродвигателя 20. Альтернативно, двигатель может генерировать только какую-то долю от требуемого усилия торможения/удержания. В этом случае торможение завершается с помощью отдельных средств торможения. В последнем случае достигается уменьшение усилия торможения, которое должен развивать механический тормоз. В соответствии с еще одним вариантом указанный электродвигатель 20 во время торможения работает как генератор, причем электрическая энергия, генерируемая при торможении, подается в электрическую сеть. Желательно, чтобы электрическая сеть была той же самой сетью, которая обеспечивает питание электрической машины, входящей в состав комплекта оборудования, когда она функционирует как электродвигатель.На фиг.4 представлен вариант системы по изобретению, ориентированный на получение наиболее компактной и простой структуры. Как показано на фиг.4, указанный зубчатый обод 10 приводится во вращение посредством червяка 12, непосредственно связанного с указанным зубчатым редуктором 22. Однако при этом следует отметить, что хотя в вариантах, представленных на фиг.1 и 4, имеется зубчатый обод 10 и средства 12 для обеспечения его поворота, применение зубчатого обода не является обязательным. Возможны и другие решения, обеспечивающие передачу мощности от указанного двигателя к указанному узлу 8. К таким решениям, например, относится использование электродвигателя, статорная обмотка которого охватывает по периметру узел 8 вала. В этом случае под силовой передачей подразумеваются любые средства, обеспечивающие передачу мощности от указанного двигателя на указанный узел 8.Фиг.4 иллюстрирует также другой вариант выполнения датчика. В этом варианте использован бесконтактный датчик 16, установленный вблизи, но тем не менее отдельно от узла вала силовой установки. Указанный датчик воспринимает метки, распределенные по периферии узла вала, и на основе этой информации вырабатывает позиционный сигнал.На фиг.5 приведен график последовательности операций, выполняемых системой согласно настоящему изобретению. В соответствии с принципами изобретения движение судна обеспечивается посредством азимутальной силовой установки. Ориентация (направление по курсу) силовой установки отслеживается посредством датчика. Информация, поступающая от датчика, может использоваться в аналоговом формате или, если это необходимо, преобразовываться в цифровую форму. До поступления новой команды на изменение курса положение азимутальной силовой установки удерживается соответствующим последней команде, полученной с капитанского мостика. Если анализ позиционной информации указывает на необходимость коррекции положения (вследствие отклонения от заданного курса, проскальзывания в тормозе или каких-либо иных причин), она может быть проведена автоматически.Когда необходимо произвести поворот судна, в модуль управления поступает соответствующая команда. Эта команда обрабатывается в модуле управления согласно установленному порядку. При этом используется новейшая позиционная информация, полученная от датчика. По завершении указанной обработки модуль управления выдает команду на разворот азимутальной силовой установки на соответствующие компоненты системы по изобретению, в состав которой входит электродвигатель. Управление электродвигателем осуществляется посредством управления источником мощности, таким как инвертор. Обеспеченное таким образом вращение электродвигателя через механическую передачу преобразуется в заданный разворот азимутальной силовой установки; в результате судно соответственно изменяет свой курс.Таким образом, настоящее изобретение обеспечивает создание системы и способа, которые представляют собой новое решение проблемы управления по курсу для судна, оборудованного азимутальной силовой установкой. Данное решение позволяет устранить ряд недостатков, присущих уровню техники, и обладает преимуществами упрощения конструкции, повышенной экономичности, удобством управления и безопасностью. Следует отметить, что описанные варианты осуществления настоящего изобретения не ограничивают объема его правовой охраны, который определяется формулой изобретения. Напротив, формула изобретения охватывает все модификации, эквивалентные и альтернативные варианты, которые соответствуют принципам и объему изобретения, определяемому формулой.

Формула изобретения

1. Приводная система гребного винта для обеспечения движения надводного судна и управления им по курсу, содержащая азимутальную силовую установку (6), в состав которой входят силовая гондола (1), расположенная вне корпуса судна ниже ватерлинии, первый электродвигатель (2) или аналогичный приводной агрегат, установленный внутри указанной гондолы для обеспечения вращения гребного винта (4), связанного с указанной гондолой, и узел (8) вала, связанный с указанной гондолой и несущий ее с возможностью разворота гондолы относительно корпуса судна (9), приводные средства для обеспечения разворота указанной азимутальной силовой установки (6) относительно корпуса указанного судна (9) для управления судном по курсу в соответствии с командой рулевого управления, поступающей от устройства (38) рулевого управления судном, отличающаяся тем, что указанные приводные средства содержат второй электродвигатель (20) для разворота указанной азимутальной силовой установки (6) через механическую силовую передачу (40), связанную с указанным вторым электродвигателем, при этом система дополнительно содержит источник питания (30) для подачи электрической энергии на указанный второй электродвигатель (20), модуль (34) управления для управления работой указанного второго электродвигателя (20) посредством управления указанным источником питания (30), датчик (16), функционально связанный с указанным модулем (34) управления для определения углового положения указанной азимутальной силовой установки (6), причем указанный модуль (34) управления выполнен с возможностью совместной обработки команды рулевого управления, поступающей от указанного устройства (38) рулевого управления судном, и позиционной информации об угловом положении, поступающей от указанного датчика (16), и с возможностью управления работой указанного второго электродвигателя (20) на основе результатов указанной обработки.2. Приводная система гребного винта по п.1, отличающаяся тем, что механическая силовая передача включает в себя круговой зубчатый обод (10), соединенный с узлом (8) вала, шестерню или червяк (12), выполненные с возможностью взаимодействия с указанным зубчатым ободом, и редуктор (22), установленный между указанным зубчатым ободом и указанным вторым электродвигателем (20).3. Приводная система гребного винта по п.1 или 2, отличающаяся тем, что указанный источник питания (30) содержит инвертор переменного тока (ПТ-инвертор).4. Приводная система гребного винта по п.3, отличающаяся тем, что содержит средство (26) торможения, функционально связанное с указанным ПТ-инвертором для передачи команд управления на средство (26) торможения.5. Приводная система гребного винта по п.4, отличающаяся тем, что указанное средство (26) торможения представляет собой тормоз, например фрикционный или магнитный, выполненный отдельно от указанного второго электродвигателя.6. Способ обеспечения движения и управления по курсу надводным судном, согласно которому судно приводят в движение посредством азимутальной силовой установки (6), содержащей силовую гондолу (1), расположенную вне корпуса судна ниже ватерлинии, первый электродвигатель (2) или аналогичный приводной агрегат, установленный внутри указанной гондолы для обеспечения вращения гребного винта (4), связанного с указанной гондолой, и узел (8) вала, связанный с указанной гондолой и несущий ее с возможностью разворота гондолы относительно корпуса судна (9), при этом указанную азимутальную силовую установку (6) разворачивают относительно корпуса указанного судна (9) в соответствии с командой рулевого управления, поступающей от устройства (38) рулевого управления судном, отличающийся тем, что посредством датчика (16), функционально связанного с модулем (34) управления, определяют угловое положение азимутальной силовой установки (6) по курсу, в модуле (34) управления производят обработку информации, содержащейся в команде рулевого управления, поступившей от указанного устройства (38) управления, и информации об угловом положении, поступающей от указанного датчика (16), основываясь на результатах указанной обработки, произведенной в указанном модуле (34) управления, разворачивают указанную азимутальную силовую установку (6) через механическую силовую передачу (40), связанную с указанным вторым электродвигателем (20), и подают электрическую мощность на указанный второй электродвигатель (20) также на основе результатов указанной обработки.7. Способ по п.6, отличающийся тем, что разворот указанной азимутальной силовой установки (6) осуществляют посредством кругового зубчатого обода (10), шестерни или червяка (12), выполненных с возможностью взаимодействия с указанным зубчатым ободом, и редуктора (22), установленного между указанным зубчатым ободом и указанным вторым электродвигателем (20).8. Способ по п.6 или 7, отличающийся тем, что питание указанного второго электродвигателя осуществляют через ПТ-инвертор, а требуемую регулировку скорости разворота указанной азимутальной силовой установки (6) производят посредством соответствующей регулировки электрической мощности, поступающей от указанного ПТ-инвертора.9. Способ по п.8, отличающийся тем, что остановку разворота указанной азимутальной силовой установки (6) и/или ее удержание в развернутом положении осуществляют с помощью средства (26) торможения, управляемого от ПТ-инвертора.10. Способ по любому из пп.6-9, отличающийся тем, что обработку указанной команды рулевого управления и указанной позиционной информации в указанном модуле управления производят посредством устройства обработки данных, такого как микропроцессор или модуль управления мощностью.11. Способ по любому из пп.6-10, отличающийся тем, что торможение разворота указанной азимутальной силовой установки осуществляют посредством электрического генератора, связанного с азимутальной силовой установкой (6) через механическую силовую передачу (40), с подачей генерируемой при этом электрической энергии в электрическую сеть.12. Способ по п.11, отличающийся тем, что в качестве электрического генератора используют указанный второй электродвигатель (20), работающий в режиме генератора.

Похожие патенты: