Самодельная зарядка для LiPo большой ёмкости. Как зарядить LiPo аккумулятор в поле: как сделать переносную полевую зарядку Зарядное устройство для липо аккумуляторов

В настоящий момент литий-полимерные аккумуляторы (Li-Po) используются повсеместно (в том числе и моделистами) так как:

  • они способны отдавать очень большие токи по сравнению с другими типами аккумулятором (в десятки раз выше чем, например, никель-металл-гидридные, такие, как Ni-Cd или Ni-Mh);
  • отсутствует эффект «памяти» аккумулятора, возможно длительное хранение - за год хранения они теряют не более 10% емкости;
  • позволяют осуществить большое количество циклов заряда-разряда без существенной потери емкости;
  • обладают достаточно неплохим соотношением масса/емкость/токоотдача;
это делает их незаменимыми в ряде случаев. К недостаткам следует отнести:
  • этот тип аккумуляторов очень легко повредить (деформировать или проколоть), что ведет к возгоранию;
  • при эксплуатации на холоде может внезапно “просесть” напряжение, нужно очень внимательно за этим следить;
  • относительно высокая стоимость.
Общие понятия
1. Рассмотрим маркировку Li-Po аккумуляторов:

Итак, первое, на что стоит обратить внимание, это надпись 3S1P 11,1V (цифра 1).

Это означает, что в этом аккумуляторе 3 ячейки подключены последовательно.
Если обозначение 3S2P, это означает две группы по 3, подключенных последовательно, ячейки, подключенные параллельно. Звучит как-то сложно, но это не так=)

Пояснение на картинке ниже:


Напряжение одной ячейки («банки») условно принимается как 3,7V, отсюда напряжение «трехбаночного» аккумулятора – 11,1V. На самом деле напряжение полностью заряженной ячейки 4,2V, то есть аккумулятор (акб) 3S, полностью заряженный, имеет напряжение 12,6V.

Минимальное напряжение на ячейке, ниже которого разряжать аккумулятор нельзя – 2,8V. На самом деле, лучше не опускать напряжение ниже 3,3V на ячейку, поскольку дальше начинаются процессы отложения солей, что ведет к необратимой деградации аккумулятора.
В случае, если идет использование акб на борту коптера, ниже, чем 3,5V на банку опускать не стоит, а в холодное время года не ниже 3,7V. Выяснено экспериментально, в процессе ни один коптер не пострадал=)

2. Итак, едем дальше. Токоотдача (цифра 2):

Как считается токоотдача: мы умножаем число «C» на емкость в Ah. В нашем случае 25С*2,2Ah (2200mAh переводим в Ah). Получаем 25С*2,2Ah=55A, то есть это аккумулятор способен отдавать 55 Ампер продолжительное время. Реально рекомендуется брать хотя бы 20% запас по току, то есть этот акб использовать с нагрузкой, потребляющей не более 44А в долговременном режиме. Некоторые производители кроме основной токоотдачи указывают пиковое значение «C», которое способен выдержать аккумулятор.

3. Ну и третий параметр это емкость. Измеряется в миллиампер часах или ампер часах (в нашем случае емкость акб 2200 миллиампер часов или 2,2 ампер часа).В переводе на русский это означает, что при подключении нагрузки, потребляющей 2,2А, акб полностью разрядится за 1 час.

Зарядка Li-Po аккумуляторов

Для зарядки Li-Po аккумуляторов рекомендуется использовать специализированные зарядные устройства, например такие: Вариант попроще (умеет заряжать с балансировкой только 2S и 3S аккумуляторы, небольшими токами и только Li-Po): https://goo.gl/o9J23t
Вариант покруче (умеет заряжать с балансировкой аккумуляторы 2S-6S, плюс Ni-Cd, Ni-Mh акб): https://goo.gl/gJdAET Если производитель не дает на эту тему спец рекомендаций, аккумуляторы рекомендуется заряжать током, не превышающим 1C. В нашем случае, это 2,2Ah*1C=2,2A, то есть этот аккум рекомендуется заряжать током не более 2,2 Ампер. Опять же, в реальности, чем меньше зарядные и разрядные токи, тем дольше будет жить аккумулятор. В инструкции к зарядному устройству можно прочитать о зарядке с балансировкой. Рекомендуется всегда заряжать аккумулятор только так, это исключает вариант разбалансировки ячеек (общее напряжение на нашем акб может быть 12,6V, но, при этом, на первой банке будет 4V, на второй 4,2V, а на третьей 4,4V). При перезаряде даже одной ячейки аккумулятор может загореться и даже взорваться, именно поэтому и рекомендуется ВСЕГДА проводить зарядку с балансировкой. Зарядку Li-Po аккумуляторов следует производить только под присмотром и в емкости, которая не горит! Самый лучший вариант – использование несгораемых пакетов для хранения и зарядки, например таких:
https://goo.gl/d6jmSz | ​https://goo.gl/cSd3C3 ​​​
https://goo.gl/K8kUW7 Кроме того, если акб только после полета – ему нужно дать остыть!

Разрядка Li-Po аккумуляторов/хранение Li-Po аккумуляторов

Как посчитать максимальный ток, которым можно разряжать аккумулятор, мы уже обсудили.
Теперь пойдут общие рекомендации по эксплуатации акб, особенно на коптерах (т.к. там обычно очень большие токи):
  • Перед полетом нужно проверить не только общее напряжение на акб, но и напряжение на каждой банке (во избежание разбалансировки), сделать это можно мультиметром или, что более удобно, спец девайсом типа этих:

    Если полет проходит в холодное время года (особенно при отрицательных температурах), аккумулятор нужно ставить теплым (например, подогреть его в машине)

  • В холодное время года не следует разряжать акб менее чем до 3,7V на ячейку
  • Если в полете аккумулятор нагрелся, не следует его заряжать сразу после полета, нужно дать ему полностью остыть и только потом ставить на зарядку
  • В случае если планируется долгое время не эксплуатировать акб, хранить его нужно в полузаряженном состоянии (напряжение около 3,7-3,8V на ячейку), это так называемый режим хранения. Зарядные устройства (ссылки были выше) умеют вводить акб в режим хранения, так называемый «STORAGE»

Понадобилась зарядка для 3х баночной литиевой батареи и дабы не покупать класический iMax B6, я заглянул в бенгуд посмотреть какая есть альтернатива. Оказалось альтернатив много и сравнивая возможности зарядки и своего кошелька выбор пал на сабж. Заказ был оплачен, на следующий день отправлен(спасибо магазину!) и началось томное ожидание. Каков результат и вывод - прошу под кат.

Спустя месяц посылка была получена. Упаковка стандартная для бенга: черный полиэтиленовый пакет, товар завернут в вспененный полиэтилен. Коробка немного пострадала но не смертельно. Внутренности уцелели.


В комплекте: коробка, зарядка, инструкция на английском, кабель. Кабель короткий с американской вилкой - улетел в мусор. На замену используется кабель от переносного магнитофона.


Зарядка - это такая себе коробкочка 88х55х30мм, пластик черный, качество нормальное.
На лицевой стороне расположены 3 двухцветных (красный/зеленый) светодиода отображающие статус банки. Зеленый - заряжено, красный - заряжается. Светодиод отсутствующей банки горит зеленым.




То есть при включении зарядки без батареи все лампочки горят зеленым. Немного странный алгоритм.


Электрические параметры обещанные производителем:
Напряжение питания: 110-220В
Мощность: 20Вт
Исходящий ток(ток нагрузки): 1600мА, на корпусе указано 3х700мА.
Вес: 100г - по факту меньше.

Инструкция










Перейдем к вскрытию. Корпус открывается легко - 4 самореза.
Как видно саморезы не подбирали или корпус изготовлен не верно - все стойки, в которые вкручены саморезы, лопнули.




Плата на вид достаточно качественная, монтаж тоже.










С обратной стороны флюс смыт но не окончательно, так же присутствуют «сопли» термоклея которыми зафиксированы стойки светодиодов.






Блок питания выполнен на популярном чипе DK112, а зарядная часть выполнена на еще более популярном:) чипе TP4056, которым все знают по компактной плате зарядки Li-po батарей. По одному TP4056 на канал. Токозадающий резистор - 1.5 кОм, что по спецификации соответствует максимальному току заряда 780 мА. Впервые вижу что бы китайцы занижали параметры устройства)))


Кстати, ток заряда на банку можно регулировать изменив сопротивление резистора. Это на тот случай если не нужен такой большой ток заряда, а зарядка эта есть или подходит по каким то другим причинам.
780 мА - это не мальнький ток, а если еще его утроить, то нагрев должен быть приличный. Так и есть - при зарядке коробка греется но не горячая, скорее всего потому что чипы находятся далеко от корпуса. По-хорошему на чипы надо бы наклеить радиатор но пока нет ничего подходящего. Посмотрим насколько долго хватит ресурсов TP4056 - в отзывах на бенге есть один о горевшем канале. Благо сами чипы TP4056 стоят десяток на доллар так что можно их легко менять.

Зарядка батареи
К зарядному была подключен батарея 2S (4500х2) с зарядом примерно 70%.


Зарядка ее аккуратно зарядила, слачала погас один светодиод, потом второй.


Итог: одна банка 4.17В, вторая - 4.2В. Хороший результат.





Для сравнения замер батареи пищалкой и мультиметром.



Позже была заряжена батарея 2S (300х2) и на одной банке так же был недозаряд: 4.16/4.20В. Причина в чипах TP4056, толи китайские допуски, толи отбраковка…
При желании можно заменить TP4056 которая недозаряжает дабы получить идеальную зарядку.
Какой максимальный ток отдает зарядка при заряде батареи 3S и вытягивает ли встроенный БП пока неизвестно, так как нет такой батареи под рукой, да и как ток мерять по трем каналам, можно конечно померять общий ток после выхода бп, но в следующий раз.

В общем подведем итоги.

Плюсы: имеет встроенный блок питания, умеет балансировать заряд между банками, хорошая цена.
Минусы: слабо реализована система охлаждения зарядной части (желательно установить радиаторы на TP4056, просверлить дополнительные отверстия в корпусе для лучшей вентиляции), короткий кабель с плоской вилкой, не идеальный конечный результат заряда(хотя возможно это мои придирки).

Выводы: зарядное мне понравилось и имеет право на существование. Если у вас нет надобности в мультизарядке и есть к примеру только один прибор с многобаночной батареей, то данное зарядное устройство будет хорошим выбором для использования его вблизи розетки.
При наличии желания и прямых рук зарядку можно модернизировать для получения более точного напряжения заряда.

Планирую купить +19 Добавить в избранное Обзор понравился +21 +34

В этой статье, на основе рекомендаций множества пилотов и гонщиков на мини коптерах, мы покажем несколько отличных зарядников для LiPo аккумуляторов. Выбранные зарядные устройства отличаются надежностью, легкостью использования и широкими возможностями.

Портативность — это еще один критерий, важный для пилотов мини коптеров, т.к. в поле тоже бывает нужно заряжать аккумуляторы.

Другие популярные комплектующие для гоночных коптеров можно найти по тэгу « «.

Зарядные устройства серии iSDT

iSDT Q6 Plus 300W

  • Купить на Banggood | Amazon | GetFPV | RDQ
  • Обзор (англ.)

iSDT SC-608 150W

  • Купить на Banggood | Amazon
  • Обзор (англ.)

iSDT D2 200W 2-Channel

Без сомнения, зарядники iSDT очень популярны в нашей группе. Есть 3 варианта с разной максимальной мощностью, они подойдут большинству пилотов. Интерфейс пользователя на цветном экране прост в использовании. Для указанной мощности они довольно компактные.

Все три зарядника портативные, ими легко пользоваться в поле. Однако, это относительно новые зарядники, так что убедитесь, что установлена последняя прошивка, со всеми исправлениями и улучшениями. Вот .

Небольшой недостаток этих зарядных устройств — это отсутствие блока питания. Его нужно покупать отдельно. Например, такой .

На ebay я купил недорогой и легкий блок питания для ноутбуков (100 Вт), его удобно брать с собой в поездки. Благодаря широкому диапазону входного напряжения, подойдет очень много разных блоков питания. Выходной разъем можно немного модифицировать и добавить XT60.

D2 — это по сути два зарядника в одном корпусе, он может заряжать 2 разных аккумулятора одновременно, или к нему можно подключить 2 разные платы параллельной зарядки. Кроме того, в него встроен блок питания, так что он напрямую подключается к розетке.

Обновление (август 2017). Модели SC608 и SC620 больше не производятся. Их ещё можно найти в продаже, но обновлений прошивок больше не будет. ИМХО, смысл брать их всё ещё есть.

SC608 Q6 SC620 D2
Цена $50 $60 $70 $140
Мощность, Вт 150 300 500 200 х2
Макс. ток заряда, А 8 14 20 20 х 2
Встроенный БП, напряжение питания Нет Нет Нет Есть
Вес, г 110 119 289 510

SkyRC iMAX B6 Mini

  • Купить на Banggood | AliExpress

Простой, бюджетный зарядник. B6 Mini — обновленная версия старого и хорошо известного B6, который был одним из самых популярных зарядных устройств. Есть очень много подделок, так что убедитесь, что берете именно оригинал.

Цена $40
Мощность, Вт 60
Макс. ток заряда 6A
Нет,11 — 18 В
Вес, г 233

SkyRC Q200

  • Купить на Banggood | Amazon | AliExpress

Главная фишка SkyRC Q200 — это 4 независимых канала, т.е. он равен 4 отдельным зарядникам. Это значит, что вы можете одновременно заряжать 4 разных аккумулятора! Это просто великолепно, особенно понравится тем, кто не хочет или не может заряжать несколько аккумуляторов соединенных параллельно. Ну или если аккумуляторы с разным числом банок.

Имеет встроенный блок питания, а также вход постоянного тока, т.е. его можно использовать и в поле. Недостаток — вес около 1,3 кг.

Вы можете даже подключить этот зарядник к компьютеру или смартфону чтобы управлять им и контролировать процесс заряда.

Turnigy Reaktor 300W

В Reaktor 300W есть встроенный блок питания, а также вход постоянного тока. Это определенно один из самых надежных зарядных устройств.

Не любите платы параллельной зарядки? Тогда обратите внимание на SkyRC E4Q! Это недорогой 4-х канальный зарядник. Отлично подойдет и для зарядки аккумуляторов в очках/шлемах.

Имеет вход с разъемом XT60, и благодаря малым размерам и весу, отлично подойдет для работы в поле.

Цена $55
Макс. мощность, Вт 4 х 50 Вт
Макс. ток заряда 5 А
Встроенный БП, напряжение питания нет, 11 — 26 В
Вес 280 грамм

Надеюсь эти подсказки оказались полезными. Мы будем следить за новыми устройствами и постараемся держать этот список в актуальном состоянии. Пишите, если есть вопросы.

История измерений

  • Июль 2017 — первая версия статьи
  • Июль 2018 — убран SC620 (снят с производства), добавлены SkyRC E4Q и iSDT D2

Для зарядки LiPo аккумуляторов большой емкости, недорогие зарядные балансиры не вполне подходят по причине ограниченного зарядного тока, в результате чего заряд аккумуляторов большой емкости (2…5А) растягивается на весьма длительное время. Предлагаемое зарядное устройство предназначено для зарядки 2S…3S LiPo аккумуляторов большой емкости с их балансировкой и индивидуальным отключением банок, на которых напряжение достигло 4,2 вольт.

Данная схема предназначена для зарядки 2S и 3S аккумуляторов, но при необходимости заряжать 4S или 5S аккумуляторы, достаточно увеличить число ячеек. Все ячейки одинаковы.

Принцип работы ЗУ рассмотрим на примере одной ячейки. Основой является прецизионный cтабилитрон TL431 с регулируемым порогом включения. Порог включения задается резистивным делителем напряжения на выводе управляющего электрода стабилитрона. До момента включения стабилитрона весь ток заряда течет через аккумулятор. Стабилитрон через резистор 1 Ком подключен параллельно аккумулятору, и напряжение на плюсовой шине, а также на резистивном делителе (и на управляющем электроде стабилитрона) по мере заряда аккумулятора постепенно возрастает. При достижении напряжения на аккумуляторе 4,2 Вольт открывается стабилитрон и от падения напряжения на резисторе 1 Ком открывается силовой транзистор КТ816. Зарядный ток теперь проходит через него. Загорается сигнализирующий светодиод. Цепочка из 4х последовательно соединеных мощных диодов и переход КЭ транзистора являются мощным стабилитроном с напряжением стабилизации около 4,2 Вольт, который препятствует разряду аккумулятора через открытый переход транзистора. Резистор *1,5 Ком подобрать таким образом, что бы при достижении на соответствующей банке аккумулятора напряжения +4,2 Вольт стабилитрон открывался и загорался сигнальный светодиод.

Доработанная схема.

Детали.
Трансформатор ТН36 или аналогичный.
Транзисторы КТ816 (ток коллектора 3 А).
Диоды – мощные диоды дипа КД226 с током не менее 2 А.
Мощный проволочный переменный резистор 10…..20 Ом для регулировки тока заряда.
Амперметр 1….3 А, для контроля тока заряда.

Каждый транзистор имеет небольшой радиатор 20 х 40 мм из аллюминия 1 мм.

Выходное напряжение, поступающее с выпрямителя на балансир должно превышать напряжение заряжаемой батареи. В выпрямителе использован диодный мост на ток 3 А и конденсатор 2200 мкф х 36 Вольт.

Для одной банки - напряжение с выпрямителя должно быть около 6 Вольт.
Для двух банок - напряжение с выпрямителя должно быть около 11 Вольт.
Для трех банок - напряжение с выпрямителя должно быть около 15 Вольт.
Для четырех банок - напряжение с выпрямителя должно быть около 20 Вольт.

При необходимости можно коммутировать обмотки трансформатора.
Напряжение отсечки заряженной банки 4,2 вольт.

Ток заряда для аккумуляторов выставляется мощным проволочным переменным резистором 10…20 Ом в пределах 1…2 А, а для аккумуляторов маленькой емкости в пределах 0,5 А.
Пользуюсь этим зарядником два года. Заряжаю аккумуляторы 1,8……….3,0 А.

Монтажка

Негатив печатной платы на три зарядные ячейки (3S LiPo) . Вид со стороны дорожек.

Вариант конструктивного исполнения ЗУ. Вид спереди. Диоды горят - заряд окончен.

Вид сзади. Видна ось переменного проволочного резистора установки тока.

Общий вид на внутренности.

Вид на печатную плату.

Видны - переменный резистор, диодный мост, конденсатор фильтра.

Специально для скептиков и приверженцев микроконтроллеров хочу сказать следующее.
Я ни в коем случае не отрицаю преимущества микроконтроллеров перед технологиями 80х годов!
Но схемотехника и технологии 80х доступны даже начинающим радиолюбителям, чего не скажешь о микропроцессорах. В данной статье я просто хочу показать, что на простых советских радиоэлементах, можно без особых усилий и материальных затрат за пару дней собрать то или иное нужное для дела устройство!

Александр Дегтярев, Владикавказ

Дополнительная статья


При последовательном способе зарядки, одно из главных требований, которое необходимо обеспечить, следующее – напряжение ни на одной секции заряжаемого литиевого аккумулятора, при зарядке, не должно превысить определённой величины (величина этого порога зависит от типа литиевого элемента). Обеспечить выполнение этого требования, при последовательной зарядке, не приняв специальных мер, невозможно… Причина очевидна – отдельные секции аккумулятора не идентичны, поэтому достижение максимально допустимого напряжения на каждой из секций при зарядке, происходит в разное время. Складывается ситуация, когда мы обязаны зарядку прекратить, так как напряжение на части секций уже достигло максимально допустимого порога. В то же время, часть секций остаются недозаряженными. Это плохо главным образом потому, что в итоге снижается общая ёмкость аккумулятора, так нам придётся прекратить разряд аккумулятора в тот момент, когда напряжение на самой «слабой» (недозаряженной) секции, достигнет своего минимально допустимого порога.

Чтобы не допустить повышение напряжения при зарядке, выше определённого порога, и служит балансир. Его задача достаточно проста – следить за напряжением на отдельной секции, и, как только напряжение на ней при зарядке достигнет определенной величины, дать команду на включение силового ключа, который подключит параллельно заряжаемой секции балластный резистор. При этом, если остаточный ток зарядки (а он, ближе к концу зарядки, уже достаточно мал, из-за малой разницы потенциалов между напряжением на заряжаемом аккумуляторе и напряжением на выходе зарядного устройства) будет меньше (или равен) тока протекающего через балластный резистор, то повышение напряжения на заряжаемой секции – прекратиться. При этом зарядка остальных секций, напряжение на которых ещё не достигло максимально допустимых значений – продолжиться. Закончится процесс заряда тем, что сработают балансиры всех секций аккумулятора. Напряжение на всех секциях будет одинаковым, и равным тому порогу, на которые настроены балансиры. Ток зарядки будет равен нулю, так как напряжение на аккумуляторе и напряжение на выходе зарядного устройства будут равны (нет разности потенциалов – нет тока зарядки). Будет протекать лишь ток через балластные резисторы. Его величина определяется величиной последовательно соединённых балластных резисторов и напряжением на выходе зарядного устройства.

Саму функцию контроля напряжения, легко смог бы выполнить любой компаратор, снабжённый опорным напряжением… Но компаратора у нас нет (точнее – он есть, но использовать его нам не удобно и не выгодно). У нас есть TL431. Но компаратор из неё, честно сказать – никакой. Сравнивать напряжение с опорным она умеет очень хорошо, но вот выдать чёткую, однозначную команду на силовой ключ, она не может. Вместо этого, при подходе к порогу, она плавно начинает загонять силовой ключ в активный (полуоткрытый) режим, ключ начинает сильно греться, и, в итоге, мы имеем не балансир, а полную ерунду.

Вот именно эту проблему, которая не позволяла полноценно использовать TL431, удалось решить на днях. Ларчик просто открывался (но открывать его пришлось более двух лет) – надо было превратить TL431, в триггер Шмитта. Что и было сделано. Получился идеальный балансир - точный, термостабильный, достаточно простой, с чёткой командой на силовой ключ.

Ниже - две принципиальные схемы балансиров, рассчитанные для контроля порогов LiFePO4 и Li-ion аккумуляторов.

Превратить TL431 в триггер Шмитта, удалось добавив в схему p-n-p транзистор Т1 и резистор R5. Работает это так - делителем R3,R4 определяется порог контролируемого напряжения. В момент, когда напряжение на управляющем электроде достигает 2,5 Вольта, TL431 – открывается, открывается при этом и транзистор Т1. При этом потенциал коллектора повышается, и часть этого напряжения через резистор R5 поступает в цепь управляющего электрода TL431. При этом TL431 лавинообразно входит в насыщение. Схема приобретает ярко выраженный гистерезис – включение происходит при 3,6 Вольт, а выключение - при 3,55 Вольт. При этом в затворе силового ключа формируется управляющий импульс с очень крутыми фронтами, и попадание силового ключа в активный режим – исключено. В реальной схеме, при токе через балансировочный резистор равном 0,365 Ампер, падение напряжения на переходе сток-исток силового ключа составляет всего 5-6 мВ. При этом сам ключ, всегда остаётся холодным. Что, собственно, и требовалось. Эту схему можно легко настроить для контроля любого напряжения (делителем R3,R4). Величина максимального тока балансировки определяется резистором R7 и напряжением на секции аккумулятора.

Коротко про точность. В реально собранном балансире на пять секций для аккумулятора LiFePO4, напряжения при балансировке уложились в диапазон 3,6-3.7 Вольт (максимально допустимое напряжение для LiFePO4 составляет 3,75 Вольт). Резисторы при сборке использовались обычные (не прецизионные). На мой взгляд – очень хороший результат. Считаю, что добиваться большей точности при балансировке, никакого особого практического смысла – нет. Но для многих – это скорее вопрос религии, нежели физики. И они вправе, и имеют возможность добиваться большей точности.

Рисунок ниже – плата отдельного балансира, и, для примера, плата балансира на шесть секций. Очевидно, что клонируя плату отдельного балансира, можно легко сделать плату балансира на любое количество секций и любых пропорций. Вот таким зарядно-балансировочным устройством я теперь пользуюсь. Я использую блок питания, описанный в статье про инвертор с адаптивным ограничением тока. Но можно использовать и любой другой стабилизированный блок питания, доработав его шунтом.

Балансир выполнен в виде отдельной платы. Он подключается к балансировочному разъему аккумулятора во время зарядки.

Пара слов про комплектующие. TL431 и p-n-p биполярный транзистор (подойдёт практически любой) в корпусах SOT23, можно найти на материнских платах компьютеров. Там же, можно найти и силовые ключи с "цифровыми" уровнями. Я использовал CHM61A3PAPT (или можно - FDD8447L) в корпусах TO-252A - подходят идеально, хотя характеристики очень избыточны (на токи до 1А, можно найти и что-нибудь по-проще).

В современных устройствах контроля за литиевыми батареями, описанные выше функции возложены на микроконтроллер.Но это гораздо более сложные для повторения устройства, и их применение оправдано далеко не всегда. Думаю - совсем не плохо, когда есть выбор.

Так выглядит балансир "живьём". За качество изготовления, вновь прошу прощения - из-за экономии времени, вновь рисовал плату обычным перманентным фломастером.