Схемы на операционных усилителях с обратной связью. Обратная связь в усилителях и схемы их построения Конденсаторы в цепи обратной связи оу

В общем случае обратную связь (ОС) можно определить как связь выходной цепи усилителя или каскада усиления с его входной цепью. Она образуется тогда, когда усиленный сигнал с выхода отдельного каскада усилителя или усилителя в целом передается на его вход через цепи, дополнительно вводимые для этого (внешняя ОС) или уже имеющиеся в нем для выполнения других функций (внутренняя ОС). К последним, например, относятся общая цепь источника питания усилителя, межэлектродные емкости в электронных приборах.

На рисунке приведена структурная схема усилителя с коэффициентом усиления К, охваченного внешней цепью ОС с коэффициентом передачи β. Цепь вместе с усилителем, к которому она подключена, образует замкнутый контур, называемый петлей ОС. Стрелками показаны направления прохождения сигнала.

Обратная связь (ОС), охватывающая один каскад, называется местной , несколько - общей .

Если во входной цепи усилителя вычитается ток в цепи ОС из тока входного сигнала, то такую ООС называют параллельной . Если во входной цепи вычитается напряжение входного сигнала из сигнала ОС, то такую ООС называют последовательной . По способу получения (снятия) сигнала ООС с выхода усилителя различают ООС по напряжению (когда сигнал ООС пропорционален U ВЫХ усилителя) и по току (сигнал ООС пропорционален току через нагрузку).

Последовательная ОС по напряжению

При последовательной обратной связи по напряжению с сопротивления нагрузки усилителя снимается часть выходного напряжения , которое во входной цепи алгебраически складывается с .

Напряжение обратной связи U ос = χU вых где χ – коэффициент ОС.

χ = R2/(R1+R2) ≈R2/R1 (обычно R1<

Прежде всего рассмотрим влияние последовательной ОС по напряжению на коэффициент усиления по напряжению. Для усилителя, охваченного обратной связью,

к uoс = U вых /(U вх ±U ос) = U вых /

но коэффициент усиления по напряжению усилителя без обратной связи к u = U вых /U вх , поэтому после проведения преобразования для ООС можно записать:

Киос =к и/ (1+χк и).

При ПОС в знаменателе правой части следует использовать знак «минус».

Введем понятие глубины обратной связи F . Для ООС F = 1+χк u. Отсюда следует, что глубина ООС возрастает при увеличении χ и К и, При очень глубокой ООС F = χк u, поэтому в данном случае можно записать

к uос = 1/χ = (R1+R2)/R2

Вывод : при глубокой ООС (F>10 ) удается практически полностью исключить влияние пара­метров транзистора и всего усилителя на его К иОС. Н е будут влиять такие факторы, как изменение температуры, радиационное воздействие, разброс параметров, старение и др. Таким образом, можно утверждать, что введение глубокой последовательной ООС по напряжению обеспечивает стабильность усиления по напряжению.

Улучшение стабильности коэффициента усиления с помощью ООС широко используется для расширения АЧХ усилителя.При отклонении в области НЧ или ВЧ уменьшается К и, но уменьшается и глубина ООС, т.е. 1+ χ К и. В результате К иОС изменяется слабо и ре­ализуется АЧХ с широкой полосой пропускания.

Входное сопротивление усилителя с ООС R вх.ос определяется способом подачи сигналов обратной связи во входную цепь. При последовательной ООС по напряжению R вх.ос можно пред­ставить как R вх.ос = U вх (1+χк u)/I вх = R вх F.

Отсюда следует, что последовательная ООС по напряжению увеличивает входное сопротивление усилителя в F раз.

Выходное сопротивление усилителя с ООС определяется способом снятия сигнала обратной связи с выхода устройства. При последовательной ООС по напряжению U вьч усилителя меньше зависит от тока нагрузки, что соответствует уменьшению его выходного сопротивления. Для рассматриваемого вида ООС можно записать

R вых.ос = R вых /F

Отсюда следует, что последовательная ООС по напряжению уменьшает выходное сопротивление в F раз. Таким образом, чем глубже ООС, тем меньше R вых.ос . Изложенное выше позволяет заключить, что последовательная ООС по напряжению уменьшает и стабилизирует коэффициент усиления по напряжению, снижает как линейные, так и нелинейные искажения, повышает входное сопротивление и уменьшает выход­ное сопротивление усилителя.

Сос
Rос

Последовательный усилитель с ОС по напряжению 100% последовательная ОС по напряжению

Последовательная ОС по току

При последовательной обратной связи по току в выходной цепи усилителя включается специальный резистор ,

падение напря­жения на котором

пропорционально выходному току.

Во входной цепи усилителя это алгебраически складывается с входным напряжением.

.

При глубокой ООС по току эту формулу можно преобразовать к следующему виду:

Последовательная ООС по току, как и по напряжению, уменьшает частотные искажения (расширяет полосу пропускания АЧХ) и нелинейные искажения усилителя. Введение ООС снижает также влияние помех и наводок, проникающих в усилитель.

Входное сопротивление усилителя с ООС определяется способом подачи сигналов во входную цепь

Наиболее существенное отличие последовательных ООС по напряжению и току проявляется через величину R выхОС. Выходное сопротивление усилителя с ООС определяется способом снятия сигнала обратной связи с выхода устройства. При этом способ подачи сигнала ООС во входную цепь не играет никакой роли. Для R выхОС усилителя, охваченного ООС по току, можно записать следующее выражение:

откуда следует, что выходное сопротивление возрастает. Таким образом, рассмат­риваемая ООС приводит к увеличению R вьхОС , причем тем в большей степени, чем глубже обратная связь.

Изложенное выше позволяет заключить, что последовательная ООС по току стабилизирует коэффициент усиления по напряже­нию при постоянной нагрузке, снижает искажения, повышает входное и выходное сопротивления усилителя.

Параллельная ОС по току

При параллельной обратной связи по току в выходной цепи усилителя включается специальный резистор R , падение напряже­ния на котором пропорционально выходному току. Это напряже­ние образует во входной цепи ток обратной связи, протека­ющий через специальный дополнительный резистор R ос . Во входной цепи усилителя происходит алгебраическое сложение I ос и тока входного сигнала. На рисунке приведена структурная схема усилителя с параллельной обратной связью по току. Здесь , а коэффициент обратной связи по току Глубина ООС по току

Коэффициент усиления по току

где - коэффициент усиления по току без ООС. При глубокой парал­лельной ООС по току

Отметим также, что введение параллельной ООС по току уменьшает как линейные, так и нелинейные искажения токовых сигналов.

Так как входное сопротивление усилителя в ООС определяется лишь способом подачи сигнала обратной связи во входную цепь, то для параллельной ООС можно записать:

Здесь во входной цепи усилителя алгебраически складываются токи. Таким образом, параллельная ООС уменьшает R вхОС , причем величина R вхОС обратно пропорциональна глубине ООС по току.

Как было выше показано, ООС по току способствует увеличе­нию выходного сопротивления усилителя. Для параллельной ООС по току R выхОС может быть рассчитано по следующей приближенной формуле:

Изложенное выше позволяет заключить, что параллельная ООС по току уменьшает и стабилизирует коэффициент усиления по току, снижает искажения токовых сигналов, уменьшает входное и увеличивает выходное сопротивления усилителя.

Параллельная ОС по напряжению

При параллельной обратной связи по напряжению с сопротивле­ния нагрузки снимается выходное напряжение, которое во входной цепи образует ток обратной связи, протекающий через специаль­ный резистор. На рисунке приведена структурная схема усилителя с параллельной обратной связью по напряжению. Хотя во входной цепи усилителя алгебраически складываются токи, при анализе усилителя с параллельной ООС по напряжению часто используют коэффициент обратной связи по напряжению . При этом необходимо учитывать шунтирующее влияние входной цепи усилителя, поскольку в данном случае Rвх . Поэтому можно представить в следующем виде:

.

Выделение напряжения во входной цепи усилителя происходит на сопротивлениях .

За счет малого R вх на внутреннем сопротивлении источника сигнала R г будет теряться солидная доля Ег В результате ко входу усилителя прикладывает­ся напряжение

.

Коэффициент усиления по напряжению при глубокой параллельной ООС по напряжению:

При параллельной ООС по напряжению К иОС стабилен при Таким образом, при глубокой параллельной ООС по напряжению можно исключить влияние внешних факторов на величину К и0 с, уменьшить линейные и нелинейные искажения. Однако такой усилитель совершенно не подходит по своим свойствам для входного каскада многокаскадного усилителя, в частности, из-за его высокой, чувствительности к изменению R г. Усилители с параллельной ООС по напряжению рекомендуется использовать в качестве промежуточных и выходных каскадов.

Вывод: параллельная ООС по напряжению стабилизирует коэффициент усиления по напряжению при постоянном сопротивлении источника сигнала, снижает искажения, уменьшает входное и выходное сопротивления усилителя.


Операционный усилитель: назначение, устройство, характеристики, типы. Схемы электронных устройств на основе операционных усилителей: инвертирующий и неинвертирующий усилители, суммирующее и вычитающее устройства, дифференцирующее и интегрирующее устройства, компаратор аналоговых сигналов.

Операционный усилитель (ОУ) - усилители с гальваническими (безконденсаторными) связями, которые имеют дифференциальный вход, один выход и работают при наличии глубокой ОС, которая практически полностью определяет параметры и характеристики устройств, собранных на них.

Обозначение:

«-» - инвертирующий вход

«+» - неинвертирующий вход

Полное обозначение : В соответствии с ГОСТ 2759-82 обозначение элементов аналоговой техники выполняется на основе прямоугольника.

Не во всех ОУ есть выводы земли, если он не нужен, то его не рисуют.

F c – выводы для подключения цепей частотной коррекции.

N c – выводы для подключения цепей коррекции начального смещения.

Разновидность ОУ .

К140УД1, УД2, УД5, УД7, УД9, УД10, УД11, УД12, УД13, УД14, УД17, УД18, УД20;

К153УД1, УД2, УД3, УД4, УД5, УД6;

К154УД1, УД2, УД3, УД4;

К157УД1, УД2;

554УД1, УД2;

551УД1, УД2;

574УД1, УД2, УД3;

740УД1, УД3, УД4, УД5;

К1401УД1, УД2;

К1407УД1, УД2, УД3, УД4;

Операционный усилитель состоит из 3-х основных каскадов: 1) дифференциальный каскад выполняет роль ослабления синфазного сигнала; 2) каскад с общим эмиттером с источником тока в коллекторной цепи - основной усилительный каскад напряжения Ku=10 3 ..10 5 ; 3) двухтактный эмиттерный повторитель в режиме класса В – предназначен для согласования высокого входного сопротивления источника тока с невысоким сопротивлением нагрузки, кроме этого обеспечивает усиление мощности выходного сигнала.. Кроме того, ОУ может содержать схему защиты выхода от КЗ, схему защиты входа от перенапряжения.

По типам входных каскадов ОУ делятся:

На БПТ - широкий диапазон применения, хорошая балансировка, высокое входное сопротивление, больший сдвиг и дрейф;

На ПТ – высокое входное сопротивление, большой сдвиг и дрейф нуля по сравнению с БПТ;

На БПТ со сверхвысоким усилением (транзисторы супер β) - обеспечивают входное сопротивление, сопоставимое с каскадом на ПТ, величина сдвигов, и дрейфов как у обычных БПТ;

С гальванической изоляцией входа от выхода - используется модуляция или оптические методы, применяется в медицине и технике высоких напряжений;

На варикапе - имеют очень малый входной ток смещения, используются для усиления тока на фотоумножителях.

Характеристики ОУ:

Входное напряжение

Max диф. входное напряжение

Max синфазное входное напряжение

Входной ток смещения

Max выходные U и I

Параметры смещения

- дрейф (температурный и временный)

- частотные

Динамические

Скорость нарастания выходного напряжения

Важнейшими характеристиками ОУ являются амплитудные (передаточные) U вых =f(U вх) и амплитудно-частотные (АЧХ) к U (f) . Амплитудно-частотная характеристика имеет вид АЧХ усилителя постоянного тока за исключением специальных частотнозависимых устройств (избирательный усилитель и др.). Передаточные характеристики имеют линейный участок, для которого к U = =const , и нелинейный - к U ¢ <к U . При реализации конкретных устройств используют линейные и нелинейные участки. Рассмотрим примеры построения устройств на базе ОУ.

Частотная характеристика :

Полоса пропускания 1МГц означает, что

к u ·f = const.

f гр = 10 6 Гц

Параметры ОУ:

Входные

Выходные

Усилительные

Энергетические

Дрейфовые

Частотные

Скоростные

Входными параметрами ОУ являются входное сопротивление, входные токи смещения, разность и дрейф входных токов смещения, максимальные, входные и дифференциальные напряжения. Наличие входных токов смещения обуславливается конечным значением входного сопротивления дифференциального каскада, а их разность - разбросом параметров транзисторов. Входное сопротивление ОУ рассматривается по отношению к входному сигналу. Для идеального ОУ , а на практике составляет от 300КОм до 10Мом, если дифференциальный каскад выполнен на БПТ, а если на ПТ, то Мом.

Входное напряжение, подаваемое на входы ОУ, ограничено максимальным дифференциальным входным напряжением, поэтому для исключения повреждения транзисторов дифференциального каскада между входами ОУ включают встречно-параллельно два каскада или стабилитрона.

Выходными параметрами ОУ являются выходное сопротивление, максимальное выходное напряжение и ток. ОУ должен обладать малым выходным сопротивлением для обеспечения высоких значений напряжения на выходе при малых сопротивлениях нагрузки. Диапазон реальных значений выходного сопротивления лежит в пределах от единиц до нескольких сотен Ом. Минимальное значение сопротивления нагрузки приводится в паспортных данных.

Максимальное выходное напряжение близко к напряжению питания .

Максимальный выходной ток ограничивается допустимым коллекторным током от обоих источников питания и соответственно суммарной потребляемой мощностью.

Динамическими параметрами ОУ являются скорость нарастания выходного напряжения и время установления выходного напряжения. Они определяются по воздействию скачка напряжения на входе на участке изменения выходного напряжения от 0,1 до .

Энергетические параметры ОУ оцениваются максимальными потребляемыми токами от обоих источников питания и соответственно суммарной потребляемой мощностью.

Инвертирующий усилитель:

Если в цепи обратной связи использовать простейший делитель напряжения, то получится базовая схема инвертирующего усилителя.

Потенциал на инвертирующем входе U- =0 . Так как ОУ находится в линейном режиме, тогда U- - U + = U вых /К 0 . Например, при U вых =5 В, К 0 = 2·10 5 получаем U А =25мкВ . Такое малое напряжение (оно сравнимо с термо-э.д.с. при ∆Т=1ºС ) даже невозможно измерить обычным цифровым вольтметром. Отсюда следует, что потенциалы на выходах ОУ можно с хорошей точностью считать равными. Если один из входов ОУ заземлить, на втором входе будет также поддерживаться нулевой потенциал, хотя напрямую входы ОУ гальванически не связаны. Этот эффект называется мнимым заземлением. Таким образом, из U + = 0 следует U - =0, Uвх = U R 5 (падение напряжения на R5 ); Uвых = U R 19 (падение напряжения на R19 ). Поскольку входной ток ОУ очень мал, им можно пренебречь, тогда получим I5 = Uвх/R5= -Uвых/R19 . Это означает, что для инвертирующего усилителя Кu = Uвых/Uвх = -R19/R5 .

Коэффициент усиления

.

Неинвертирующий усилитель:

Так как U + ≈U - , то Uвх = U - = U R 8 (падение напряжения на R8 ); Uвых = U R 8 +U R 20 (падение напряжения на R20 и R8) . Поскольку входной ток ОУ очень мал, им можно пренебречь, тогда получим Ioc = Uвх/R8= Uвых/(R20+R8) . Это означает, что для неинвертирующего усилителя Кu = Uвых/Uвх = 1+R20/R8 .

Интегратор реализует операцию

,

где t=R 1 C о.с - постоянная времени.

Может служить фильтром НЧ первого порядка

Дифференциатор: выполняет операцию

.



Для интегратора и дифференциатора на инвертирующий вход подаются прямоугольные импульсы с выхода симметричного мультивибратора. На рисунке, а приведен электрический аналог и на рисунке,б временные диаграммы, поясняющие принцип дифференцирования и интегрирования в электрических и электронных цепях.

U вых = -I ос R ос

I ос = C·dU с /dt

U с = U вх

U вых = -R ос C·dU вх /dt

Используется для выделения переднего и заднего фронтов сигнала, а так же в качестве звена ФВЧ первого порядка.

Инвертирующий и неинвертирующий сумматоры:

Действие этой схемы в точности соответствует ее названию. Инвертирующий сумматор формирует алгебраическую сумму нескольких напряжений и меняет ее знак на обратный.

Если отдельным входным напряжениям надо придать раз­личные веса, то используется схема суммирования с масштаб­ными коэффициентами. Используется для суммирования сигналов, для цифро-аналогового преобразователя. В сумматоре отсутствует взаимное влияние источников сигналов.

Для инвертирующего сумматора выходное напряжение определяется по формуле

При равенстве входных сопротивлений R 1 =R 2 =R

U вых =- (U вх.1 +U вх.2 +...+U вх.n) - для инвертирующего сумматора;

Для неинвертирующего сумматора.

В схеме сумматоров переменным параметром является сопротивление обратной связи R о.с, которое и определяет коэффициент усиления. Формулы приведены для постоянных величин (числовой сумматор) U вх.1 , U вх.2 и т.д.

Вычитатель:

Условия, выполнение которых необходимо для правильной работы этой схемы сводятся к тому, чтобы сумма коэффициентов усиления инвертирующей части схемы была рав­на сумме коэффициентов усиления ее неинвертирующей части. Другими словами, инвертирующий и неинвертирующий коэф­фициенты усиления должны быть сбалансированы.

Для схемы, представленной на рисунке, выходное напряжение пропорционально разности напряжений на входах Uвх1 и Uвх2.

При R9=R11=R10=R21, получаем

Используются в измерительных дифференциальных схемах.

Компаратор устройство сравнения двух сигналов. Компаратор изменяет скачком уровень выходного сигнала, когда непрерывно изменяющийся во времени выходной сигнал становится выше или ниже определенного уровня.

Компараторы бывают цифровые и аналоговые (сравнивает напряжения)

Диоды служат для защиты входов ОУ от перегрузки напряжения. При U = 100В диоды не открываются.

Часто на одном входе компаратора фиксированное U вх. Компаратор сравнивает входные напряжения и усиливает их разность с К и = 10 4 -10 5 . Т.е. при малейшем превышении одного сигнала над другим на выходе получаем max сигнал положительной или отрицательной полярности. Благодаря высокому коэффициенту усиления схема переключается при очень малой величине разности напряжений , поэтому она пригодна для сравнения двух напряжений с высокой точностью.

Работа компаратора при сравнении двух напряжений поясняется диаграммой:

С целью увеличения быстродействия в специа-лизированные компараторы (СА) вводят дополнительные форсирующие Re цепочки, которые могут приводить к возникновению нелинейности при работе ОУ, что несущественно для компаратора. Т.е. ОУ может работать как компаратор.

Недостаток компаратора: недостаточно чёткое срабатывание при медленно изменяющихся и защищённых входных сигналах.


Что то часто мне стали задавать вопросы по аналоговой электронике. Никак сессия студентов за яцы взяла? ;) Ладно, давно пора двинуть небольшой ликбезик. В частности по работе операционных усилителей. Что это, с чем это едят и как это обсчитывать.

Что это
Операционный усилитель это усилок с двумя входами, невье… гхм… большим коэфициентом усиления сигнала и одним выходом. Т.е. у нас U вых = K*U вх а К в идеале равно бесконечности. На практике, конечно, там числа поскромней. Скажем 1000000. Но даже такие числа взрывают мозг при попытке их применить напрямую. Поэтому, как в детском саду, одна елочка, две, три, много елочек — у нас тут много усиления;) И баста.

А входа два. И один из них прямой, а другой инверсный.

Более того, входы высокоомные. Т.е. их входное сопротивление равно бесконечности в идеальном случае и ОЧЕНЬ много в реальном. Счет там идет на сотни МегаОм, а то и на гигаомы. Т.е. оно замеряет напряжение на входе, но на него влияет минимально. И можно считать, что ток в ОУ не течет.

Напряжение на выходе в таком случае обсчитывается как:

U out =(U 2 -U 1)*K

Очевидно, что если на прямом входе напряжение больше чем на инверсном, то на выходе плюс бесконечность. А в обратном случае будет минус бесконечность.

Разумеется в реальной схеме плюс и минус бесконечности не будет, а их замещать будет максимально высокое и максимально низкое напряжение питания усилителя. И у нас получится:

Компаратор
Устройство позволяющее сравнивать два аналоговых сигнала и выносить вердикт — какой из сигналов больше. Уже интересно. Применений ему можно придумать массу. Кстати, тот же компаратор встроен в большую часть микроконтроллеров и как им пользоваться я показывал на примере AVR в статьях и про создание . Также компаратор замечательно используется для создания .

Но одним компаратором дело не ограничивается, ведь если ввести обратную связь, то из ОУ можно сделать очень многое.

Обратная связь
Если мы сигнал возьмем со выхода и отправим прямиком на вход, то возникнет обратная связь.

Положительная обратная связь
Возьмем и загоним в прямой вход сигнал сразу с выхода.

  • Напряжение U1 больше нуля — на выходе -15 вольт
  • Напряжение U1 меньше нуля — на выходе +15 вольт

А что будет если напряжение будет равно нулю? По идее на выходе должен быть ноль. Но в реальности напряжение НИКОГДА не будет равно нулю. Ведь даже если на один электрон заряд правого перевесит заряд левого, то уже этого достаточно, чтобы на бесконечном усилении вкатить потенциал на выход. И на выходе начнется форменный ад — скачки сигнала то туда, то сюда со скоростью случайных возмущений, наводящихся на входы компаратора.

Для решения этой проблемы вводят гистерезис. Т.е. своего рода зазор между переключениями из одного состояния в другое. Для этого вводят положительную обратную связь, вот так:


Считаем, что на инверсном входе в этот момент +10 вольт. На выходе с ОУ минус 15 вольт. На прямом входе уже не ноль, а небольшая часть выходного напряжения с делителя. Примерно -1.4 вольта Теперь, пока напряжение на инверсном входе не снизится ниже -1.4 вольта выход ОУ не сменит своего напряжения. А как только напряжение станет ниже -1.4, то выход ОУ резко перебросится в +15 и на прямом входе будет уже смещение в +1.4 вольта.

И для того, чтобы сменить напряжение на выходе компаратора сигналу U1 надо будет увеличиться на целых 2.8 вольта, чтобы добраться до верхней планки в +1.4.

Возникает своеобразный зазор где нет чувствительности, между 1.4 и -1.4 вольтами. Ширина зазора регулируется соотношениями резисторов в R1 и R2. Пороговое напряжение высчитывается как Uout/(R1+R2) * R1 Скажем 1 к 100 даст уже +/-0.14 вольт.

Но все же ОУ чаще используют в режиме с отрицательной обратной связью.

Отрицательная обратная связь
Окей, воткнем по другому:


В случае отрицательной обратной связи у ОУ появляется интересное свойство. Он всегда будет пытаться так подогнать свое выходное напряжение, чтобы напряжения на входах были равны, в результате давая нулевую разность.
Пока я в великой книге от товарищей Хоровица и Хилла это не прочитал никак не мог вьехать в работу ОУ. А оказалось все просто.

Повторитель
И получился у нас повторитель. Т.е. на входе U 1 , на инверсном входе U out = U 1 . Ну и получается, что U out = U 1 .

Спрашивается нафига нам такое счастье? Можно же было напрямую кинуть провод и не нужен будет никакой ОУ!

Можно, но далеко не всегда. Представим себе такую ситуацию, есть датчик выполненный в виде резистивного делителя:


Нижнее сопротивление меняет свое значение, меняется расклад напряжений выхода с делителя. А нам надо снять с него показания вольтметром. Но у вольтметра есть свое внутреннее сопротивление, пусть большое, но оно будет менять показания с датчика. Более того, если мы не хотим вольтметр, а хотим чтобы лампочка меняла яркость? Лампочку то сюда никак не подключить уже! Поэтому выход буфферизируем операционным усилителем. Его то входное сопротивление огромно и влиять он будет минимально, а выход может обеспечить вполне ощутимый ток (десятки миллиампер, а то и сотни), чего вполне хватит для работы лампочки.
В общем, применений для повторителя найти можно. Особенно в прецезионных аналоговых схемах. Или там где схемотехника одного каскада может влиять на работу другого, чтобы разделить их.

Усилитель
А теперь сделаем финт ушами — возьмем нашу обратную связь и через делитель напряжения подсадим на землю:

Теперь на инверсный вход подается половина выходного напряжения. А усилителю то по прежнему надо уравнять напряжения на своих входах. Что ему придется сделать? Правильно — поднять напряжение на своем выходе вдвое выше прежнего, чтобы компенсировать возникший делитель.

Теперь будет U 1 на прямом. На инверсном U out /2 = U 1 или U out = 2*U 1 .

Поставим делитель с другим соотношением — ситуация изменится в том же ключе. Чтобы тебе не вертеть в уме формулу делителя напряжения я ее сразу и дам:

U out = U 1 *(1+R 1 /R 2)

Мнемонически запоминается что на что делится очень просто:

При этом получается, что входной сигнал идет по цепи резисторов R 2 , R 1 в U out . При этом прямой вход усилителя засажен на нуль. Вспоминаем повадки ОУ — он постарается любыми правдами и неправдами сделать так, чтобы на его инверсном входе образовалось напряжение равное прямому входу. Т.е. нуль. Единственный вариант это сделать — опустить выходное напряжение ниже нуля настолько, чтобы в точке 1 возник нуль.

Итак. Представим, что U out =0. Пока равно нулю. А напряжение на входе, например, 10 вольт относительно U out . Делитель из R 1 и R 2 поделит его пополам. Таким образом, в точке 1 пять вольт.

Пять вольт не равно нулю и ОУ опускает свой выход до тех пор, пока в точке 1 не будет нуля. Для этого на выходе должно стать (-10) вольт. При этом относительно входа разность будет 20 вольт, а делитель обеспечит нам ровно 0 в точке 1. Получили инвертор.

Но можно же и другие резисторы подобрать, чтобы наш делитель выдавал другие коэффициенты!
В общем, формула коэффициента усиления для такого усилка будет следующей:

U out = — U in * R 1 /R 2

Ну и мнемоническая картинка для быстрого запоминания ху из ху.

Допустим U 2 и U 1 будет по 10 вольт. Тогда на 2й точке будет 5 вольт. А выход должен будет стать таким, чтобы на 1й точке стало тоже 5 вольт. То есть нулем. Вот и получается, что 10 вольт минус 10 вольт равняется нуль. Все верно:)

Если U 1 станет 20 вольт, то выход должен будет опуститься до -10 вольт.
Сами посчитайте — разница между U 1 и U out станет 30 вольт. Ток через резистор R4 будет при этом (U 1 -U out)/(R 3 +R 4) = 30/20000 = 0.0015А, а падение напряжения на резисторе R 4 составит R 4 *I 4 = 10000*0.0015 = 15 вольт. Вычтем падение в 15 вольт из входных 20 и получим 5 вольт.

Таким образом, наш ОУ прорешал арифметическую задачку из 10 вычел 20, получив -10 вольт.

Более того, в задачке есть коэффициенты, определяемые резисторами. Просто у меня, для простоты, резисторы выбраны одинакового номинала и поэтому все коэффициенты равны единице. А на самом деле, если взять произвольные резисторы, то зависимость выхода от входа будет такой:

U out = U 2 *K 2 — U 1 *K 1

K 2 = ((R 3 +R 4) * R 6) / (R 6 +R 5)*R 4
K 1 = R 3 /R 4

Мнемотехника для запоминания формулы расчета коэффициентов такова:
Прям по схеме. Числитель у дроби вверху поэтому складываем верхние резисторы в цепи протекания тока и множим на нижний. Знаменатель внизу, поэтому складываем нижние резисторы и множим на верхний.

Тут все просто. Т.к. точка 1 у нас постоянно приводится к 0, то можно считать, что втекающие в нее токи всегда равны U/R, а входящие в узел номер 1 токи суммируются. Соотношение входного резистора и резистора в обратной связи определяет вес входящего тока.

Ветвей может быть сколько угодно, я же нарисовал всего две.

U out = -1(R 3 *U 1 /R 1 + R 3 *U 2 /R 2)

Резисторы на входе (R 1 , R 2) определяют величину тока, а значит общий вес входящего сигнала. Если сделать все резисторы равными, как у меня, то вес будет одинаковым, а коэффициент умножения каждого слагаемого будет равен 1. И U out = -1(U 1 +U 2)

Сумматор неинвертирующий
Тут все чуток посложней, но похоже.


Uout = U 1 *K 1 + U 2 *K 2

K 1 = R 5 /R 1
K 2 = R 5 /R 2

Причем резисторы в обратной связи должны быть такими, чтобы соблюдалось уравнение R 3 /R 4 = K 1 +K 2

В общем, на операционных усилителях можно творить любую математку, складывать, умножать, делить, считать производные и интегралы. Причем практически мгновенно. На ОУ делают аналоговые вычислительные машины. Одну такую я даже видел на пятом этаже ЮУрГУ — дура размером в пол комнаты. Несколько металлических шкафов. Программа набирается соединением разных блоков проводочками:)

Микросхемы ОУ в абсолютном большинстве случая используются с цепями обратных связей. Чаще всего используют отрицательные обратные связи, но в некоторых случаях и положительные.

2.2.1. Микросхемы оу с цепями отрицательных обратных связей

Как было показано в разделе 2.1, охват усилителя отрицательной обратной связью позволяет существенно повысить стабильность коэффициента усиления. Это тем более важно, поскольку коэффициент усиления ОУ без обратной связи при изменении температуры может изменяться в очень широких пределах. Например, коэффициент усиления ОУ MC1556G (фирма Motorola) при t = 25 ◦ C равен приt = -50 ◦ C его величина уменьшается до
, а приt = 100 ◦ C – увеличивается до
. Использование отрицательной обратной связи позволяет существенно уменьшить нестабильность коэффициента усиления. Действительно, если необходим усилитель с коэффициентом усиления равным 100 (приt = 25 ◦ C), то используя микросхему MC1556G из формулы (2.1) получаем:

.

Отсюда
.

Подставляя в (2.1) значение К при t = 100 ◦ C, равное
, получаем:

.

Таким образом, коэффициент усиления с введением отрицательной обратной связи за счет изменения коэффициента усиления без обратной изменился всего на 0,02059%.

Очень близкий к этому результату можно получить, если учесть, что нестабильность коэффициента усиления усилителя с обратной связью, обусловленная нестабильностью коэффициента усиления без обратной связи, уменьшается в фактор обратной связи раз. Относительную нестабильность коэффициента усиления без обратной связи можно определить по формуле:

или
%.

Фактор обратной связи F необходимо рассчитать, учитывая, что он увеличился с ростом температуры, но полагая, что К ос практически не изменяется и остается равным 100.

Отсюда
или
.

С учетом, что
, получаем
в %:
%.

Сравнив с полученным ранее результатом
%, отметим, что погрешность, полученная при расчете по приближенным формулам по второму методу, отличается от погрешности, полученной по точным формулам, всего на 0,0087421%. Таким образом, нестабильность
можно рассчитывать по приближенным формулам, учитывая, что
.

Большое значение фактора обратной связи, получаемое при использование микросхем ОУ, позволяет при расчетах применять упрощенную формулу для расчета
. Действительно, если в формуле
учесть, что
и
, то получим
.

Таким образом, коэффициент усиления усилителя с отрицательной обратной связью определяется только цепью обратной связи. Справедливость условия
становиться очевидным, если считать операционный усилитель идеальным (
). Именно это обстоятельство позволило при расчете усилителей на основе ОУ использовать принцип “мнимой земли”.

Проиллюстрируем использование этого принципа на основе усилителя – инвертора, выполненного на микросхеме ОУ (рис 2.5) .

Рис. 2.5. Схема усилителя-инвертора на ОУ

В приведенной схеме ОУ охвачен отрицательной параллельной обратной связью по напряжению. Связь отрицательная потому, что, если Uг положительное, то Uвых отрицательное, что уменьшает напряжение на входе ОУ. Связь параллельная, поскольку по отношению к входам ОУ генератор Uг и сигнал обратной связи включены параллельно. Обратная связь по напряжению, т.к. сигнал обратной связи пропорционален выходному напряжению.

Учитывая, что U ВЫХ = KU ВХ, а U ВЫХ не может быть больше, чем +E и меньше, чем –E, его величину можно считать конечной. Отсюда для идеального ОУ (
), получаем
, т.е. потенциал на инвертирующем входе равен 0. Именно поэтому в названии принципа используется слово “земля”. (В абсолютном большинстве электронных устройств есть общая шина, которая обычно действительно соединяется с землей). Однако “земля” на инвертирующем входе ОУ является “мнимой” или “виртуальной”. Действительно, если генератор напряжения Uг, одна клемма которого заземлена, присоединить к какому-то резистору с сопротивлением R, а вторую клемму резистора присоединить к "земле", то от генератора через резистор R в "землю" потечет ток
. В нашем случае (рис. 2.5) от источника напряженияUг тоже потечет ток I, равный , но этот ток потечет не в "землю" (или общую шину), а в цепь обратной связи ОУ. Отсюда
и
.

Следует отметить, что ток I или любая его часть не могут пойти на вход ОУ, т.к. учитывая, что у идеального ОУ
, это создало бы на входе ОУ напряжение равное.

Можно сформулировать условия, при выполнении которых можно использовать принцип “мнимой земли”:

    ОУ является идеальным;

    ОУ охвачен отрицательной обратной связью;

    ОУ не выходит из линейного режима, т.е. его амплитудную характеристику можно считать линейной.

Рассмотрим другие цепи ОУ с отрицательной обратной связью, используя принцип “мнимой земли”.

Инвертирующий усилитель-сумматор.

Схема инвертирующего усилителя-сумматора на ОУ приведена на рис. 2.6.

Принцип работы схемы аналогичен принципу работы инвертирующего усилителя на ОУ. В данном случае ток в цепи обратной связи I 0 является суммой токов от входных генераторов напряжения U 1 , U 2 ,…, U n:

.

Рис. 2.6. Схема инвертирующего усилителя-сумматора на ОУ

В свою очередь каждый из указанных токов, согласно принципу “мнимой земли” (Uвх = 0), равен:


…,

Положим, что
. В этом случае
.

Ток , протекая по сопротивлению, создает напряжениеUвых:

.

Таким образом, при
схема не только суммирует и инвертирует сигналы, но и их усиливает. При этом напряженияU 1 , U 2 ,…, U n могут быть не только положительными, но и отрицательными.

Неинвертирующий усилитель.

Схема неинвертирующего усилителя на ОУ приведена на рис. 2.7. В схеме ОУ охвачен отрицательной последовательной обратной связью по напряжению.

Рис. 2.7. Схема неинвертирующего усилителя на ОУ

Связь отрицательная потому, что, если напряжение генератора положительное и подается на неинвертирующий вход, то напряжение на выходе будет так же положительно, но через цепь обратной связи R 2 ̶ R 1 оно подается на инвертирующий вход, уменьшая напряжение, действующее между входами ОУ. Связь последовательная, т.к. генератор напряжения и сигнал обратной связи подключаются ко входам ОУ последовательно. Обратная связь по напряжению, т.к. сигнал обратной связи пропорционален выходному напряжению.

В приведенной схеме напряжение между входами ОУ, согласно принципу “мнимой земли”, также должно быть равно нулю: Uвх = 0. Отсюда следует, что напряжение на инвертирующем входе, так же как и напряжение на неинвертирующем входе, равно Uг. Следовательно, по сопротивлению течет токI = Этот токI протекает по сопротивлению обратной связи и создает напряжение на выходеU ВЫХ.

Таким образом, ток I можно выразить через Uг и Uвых:

.

Отсюда коэффициент усиления с обратной связью
равен:

.

Если положить в схеме (рис. 2.7)
, а
, то
. Такая схема называется повторителем напряжения. Схема приведена на рис. 2.8.

Рис.2.8. Схема повторителя напряжения

Поскольку все выходное напряжение подается на вход ОУ, связь считается 100-процентной.

Неинвертирующий усилитель-сумматор.

Схема неинвертирующего усилителя-сумматора на ОУ приведена на рис. 2.9.

Рис. 2.9. Схема неинвертирующего усилителя-сумматора на ОУ

Для определения напряжения на выходе схемы Uвых необходимо прежде всего определить напряжение на неинвертирующем входе U 0 . При этом учтем, что ток в ОУ через неинвертирующий вход втекать не может (
). Следовательно, по первому закону Киргофа можно записать:
.

Каждый из токов от источников напряжения U 1 , U 2 ,…, U n можно выразить следующими формулами:


…,

Таким образом

.

Положим, что
. Отсюда

и
.

В результате, учитывая, что напряжение усиливается неинвертирующим усилителем в () раз, получаем:

.

Дифференциальный усилитель.

Дифференциальным усилителем называется усилитель, усиливающий разность входных сигналов.

Схема дифференциального усилителя на ОУ приведена на рис. 2.10. Для определения U ВЫХ целесообразно воспользоваться методом наложений (методом суперпозиций).

Рис. 2.10. Схема дифференциального усилителя на ОУ

Метод наложений (суперпозиций) состоит в том, что напряжение или ток в любой части линейной схемы, содержащей источники напряжения и тока, можно найти, определяя необходимые напряжение или ток от одного из источников напряжения или тока. При этом все другие источники напряжения замыкаются, а источники тока исключаются из схемы. Так определяются напряжение или ток от каждого источника. Затем полученные результаты суммируются.

Найдем выходное напряжение в схеме дифференциального усилителя, сначала учитывая напряжение , а затем напряжение. В первом случае, замыкая, получаем схему на рис. 2.11а. Учитывая, что входной ток идеального ОУ равен нулю, можно считать, что напряжениена неинвертирующем входе равно нулю. Следовательно, напряжение на инвертирующем входе также равно нулю. Это означает, что приведенная на рис. 2.11а схема эквивалентна схеме инвертирующего усилителя, т.е.
.

Во втором случае, замыкая , получим схему, приведенную на рис. 2.11б. Для определения
необходимо определить. С учетом, что входное сопротивление ОУ равно, получаем

.

Напряжение усиливается неинвертирующим усилителем в (1+m) раз. Отсюда

Рис. 2.11. Схемы для определения выходного напряжения дифференциального усилителя по методу наложений

Таким образом, , т.е. на выходе усилителя получаем усиленную вm раз разность входных напряжений и.

Преобразователь тока в напряжение.

В случае, если ток источника тока необходимо преобразовать в напряжение, то можно этот ток пропустить через сопротивление и получить напряжение (схема приведена на рис. 2.12). Однако такое техническое решение в целом ряде случаев оказывается неприемлемым по следующим причинам:

Рис. 2.12. Схема простейшего преобразователя тока в напряжение

Выходное сопротивление такого источника напряжения, преобразованного из источника тока, оказывается чрезмерно большим, поскольку
и при маломI для получения необходимого
следует выбрать большоеR. Следовательно, при необходимости возможного дальнейшего усиления
, требуется усилитель с очень большим входным сопротивлением;

Напряжение
, возникающее на сопротивленииR, может препятствовать нормальному функционированию источника тока I, если в качестве такого источника используется какой-либо датчик. Действительно, при изменении тока I на выходе датчика будет изменяться напряжение, что может привести к нелинейной зависимости тока датчика I от какого-либо физического параметра.

С целью исключения этих неблагоприятных факторов можно использовать схему преобразователя, выполненного на ОУ (рис. 2.13)

В данном случае ОУ охвачен отрицательной параллельной 100-процентной обратной связью по напряжению.

С учетом принципа “мнимой земли” выходное напряжение
будет равно:
, т.е.
получается равным по модулю выходному напряжению в схеме на рис. 2.12. Однако в приведенной схеме на ОУ напряжение на выходных клеммах источника тока будет всегда равно нулю, выходное сопротивление источника напряжения за счет отрицательной обратной связи по напряжению также будет близко к нулю.

Рис. 2.13. Схема преобразователя ток-напряжение, выполненная на ОУ

Кроме того, параллельная отрицательная обратная связь уменьшает входное сопротивление в (1+К) раз, где К – коэффициент усиления усилителя без обратной связи. Действительно, с учетом коэффициента усиления получаем следующие уравнения:

, I ОС =

.

Учитывая, что
, получаем

.

Поскольку входное сопротивление ОУ достаточно велико, то с большой уверенностью можно считать, что R ВХ ∙(1+К)>˃R, т.е.

.

Преобразователь напряжения в ток.

Необходимо осуществить такое преобразование, при котором ток не зависел бы от сопротивления нагрузки (при простом подключении к источнику напряжения
сопротивления нагрузки ток будет равен, т.е. будет зависеть от сопротивления нагрузки). С помощью ОУ можно сделать так, чтобы ток не зависел от сопротивления нагрузки. Схема преобразователя напряжения в ток приведена на рис. 2.14.

Рис. 2.14. Схема преобразователя напряжения в ток

Согласно принципу “мнимой земли”, учитывая, что усилитель охвачен отрицательной обратной связью,
. Отсюда ток в сопротивленииR будет равен . Этот ток не может течь от инвертирующего входа ОУ, а будет течь с выхода ОУ. При этом от сопротивления
он не будет зависеть, если напряжение
не выйдет за пределы линейной амплитудной характеристики ОУ.

Стабилизатор напряжения на основе ОУ.

Стабилизировать напряжение можно, используя опорные диоды (стабилитроны). Однако схема стабилизатора на стабилитроне и одном резисторе, приведенная на рис. 2.15., обладает рядом существенных недостатков:

Рис. 2.15. Схема стабилизатора напряжения на стабилитроне


Указанные недостатки стабилизатора напряжения можно исправить, если использовать операционный усилитель. Схема стабилизатора напряжения с использованием ОУ в качестве усилителя-регулятора приведена на рис. 2.16.

Рис. 2.16. Стабилизатор напряжения с использованием

усилителя-регулятора на ОУ

Напряжение со стабилитрона подается на неинвертирующий вход усилителя с регулируемым с помощью переменного резистора коэффициентом усиления:
.

Приведенная схема имеет следующие достоинства:

Логарифмический усилитель.

Схема логарифмического усилителя на ОУ приведена на рис. 2.17.

Рис. 2.17. Схема усилителя-логарифматора на ОУ

Операционный усилитель охвачен отрицательной обратной связью и поэтому можно использовать принцип “мнимой земли”, т.е.
. Следовательно
.

Ток I протекает по диоду, причем p-n переход смещен в прямом направлении. Ток диода определяется следующей формулой:

,

где - ток неосновных носителей,- напряжение на диоде,
- температурный потенциал,k – постоянная Больцмана, Т – абсолютная температура, q – заряд электрона.

При t = 20 ◦ C можно считать, что
. При условии U Д >> T , т.е. U Д >>25mB формула для упрощается:

или
.

Логарифмируя, получаем
.

Напряжение на диоде равно напряжению на выходе ОУ со знаком минусом:
. Таким образом, получаем

Антилогарифмический усилитель.

Схему антилогарифмического усилителя можно получить из схемы усилителя логарифматора, если поменять местами резистор и диод. Схема антилогарифмического усилителя приведена на рис. 2.18.

Используем принцип “мнимой земли”. Получаем, что
и
. Как и для логарифмического усилителя положим, что
.

Рис. 2.18. Схема антилогарифмического усилителя

Следовательно,
. Ток диода, протекая по сопротивлению обратной связиR, создает на выходе ОУ отрицательное напряжение
, т.е.
.

Учитывая, что U д =U г, получим U ВЫХ = I 0 ∙R∙.

Интегратор на ОУ.

Схема интегратора на ОУ, производящего интегрирование по времени входного напряжения
, приведена на рис. 2.19.

Рис. 2.19. Схема интегратора на ОУ

В схеме ОУ охвачен отрицательной обратной связью лишь по переменному току. По этой причине в реальном случае, т.е. при использовании любых микросхем ОУ при
на выходе ОУ устанавливается напряжение, близкое либо к
, либо
. Следовательно, на практике нужно принимать меры, чтобы удержать ОУ в линейном режиме. Это можно сделать, либо вводя дополнительную отрицательную обратную связь по постоянному току, например, шунтированием конденсатора С резистором с большим сопротивлением
, либо используя периодическую установку напряжения на выходе равным нулю, например, периодически закорачивая конденсатор электронным ключом Кл.

Рассмотрим работу интегратора, полагая, что ОУ идеальный и работает в линейном режиме. В этом случае согласно принципу “мнимой земли” напряжение на инвертирующем входе равно нулю (
). По этой причине выходное напряжение равно напряжению на конденсаторе. В свою очередь, напряжение на конденсаторе
равно заряду на конденсаторе, деленному на емкость конденсатора
. А заряд на конденсаторе равен интегралу по времени от тока, идущего на заряд конденсатора. Таким образом
и
.

Учитывая, что ток
, получаем

U ВЫХ = U C =
.

При условии, что
, имеем
, т.е. линейно изменяющееся во времени напряжение.

Положим, что на вход схемы подается синусоидальное напряжение
. В этом случае можно найти выходное напряжение, взяв интеграл от
. Однако можно сделать проще, полагая, что интегратор по переменному тогу представляет собой усилитель-инвертор, в цепь обратной связи которой включен конденсатор с сопротивлением по переменному току, равному. Отсюда
.

Дифференциатор на ОУ.

Схема дифференциатора на ОУ, осуществляющего получение на выходе напряжения, пропорционального производной по времени от входного напряжения, приведена на рис. 2.20.

Рис. 2.20. Схема дифференциатора на ОУ

Схема охвачена 100-процентной отрицательной обратной связью. По этой причине ОУ в схеме всегда будет в линейном режиме, т.е. при расчете
можно использовать принцип “мнимой земли” (
). Отсюда получаем U ВЫХ =I C ∙R.. Известно, что ток , идущий на зарядку конденсатора, равен
, где напряжение на конденсаторе
равно
. Следовательно, получаем

.

При подаче на вход дифференциатора напряжения
также как и в случае интегратора, можно рассматривать схему как усилитель-инвертор с конденсатором на входе, включенном вместо резистора. При этом
.

Селективный RC -усилитель на ОУ.

Селективный усилитель предназначен для усиления входного сигнала на одной частоте и подавления сигналов на всех других частотах. АЧХ селективного усилителя приведена на рис. 2.21.

Рис. 2.21. АЧХ селективного усилителя на ОУ

Селективный усилитель характеризуется следующими параметрами: частотой резонанса, на которой коэффициент усиления достигает максимального значения - , коэффициентом усиления на резонансной частоте -
, добротностью, определяемой как отношение резонансной частоты к разности частот ∆ω, на которых модуль коэффициента усиления на резонансной частоте уменьшается в
раз.

Схема селективного RC-усилителя с частотно -зависимой цепью отрицательной обратной связи приведена на рис. 2.22.

Рис. 2.22. Схема селективного RC-усилителя

В схеме присутствует 100-процентная отрицательная обратная связь по постоянному току, осуществляемая через резистор . Следовательно, ОУ будет всегда находиться в линейном режиме и можно использовать принцип “мнимой земли” (
). Условно положим, что входное напряжение положительно. Тогда токи, протекающие по отдельным участкам цепи обратной связи:,,I 2 имеют направление, указанное на рис. 2.22. Учтем, что I=I 1 +I 2 . Сопротивления конденсаторов С 1 и С 2 синусоидальному току обозначим Z 1 и Z 2 , и положим, что Z 1 =Z 2 =Z.

Выразим токи ,ичерез напряженияU г, U 1 и U вых:

;
;
.

Из равенства токов в узле с напряжениями U 1 , получаем:

.

Отсюда, учитывая, что
получаем:

Модуль коэффициента усиления равен:

.

Дифференцируя по ω и приравнивая производную нулю,

можно показать, что
имеет максимум на частоте:

.

.

Полагая, что на частотах и
уменьшается в
раз, получаем уравнение

.

Решая это уравнение, находим:

,

..

Отсюда
и
. Отметим, что при
и

=0.

Основные параметры селективного усилителя можно определить и по более простым формулам, известных из теории активных фильтров . Для этого в формуле K ОС произведем замену
на операторp. Получим

где
,
,
,
.

Из теории фильтров известно, что

,
,
= .

Отсюда
,
,
.

Если использовать полученные из операторного выражения
формулы, то очевидно, что определить основные параметры селективного усилителя можно гораздо проще, чем используя символический метод.

Обратная связь (ОС) по напряжению, как следует из названия, относится к петлезамкнутым конфигурациям, в которых сигнал ошибки представляет собой напряжение. В традиционных операционных усилителях обратная связь формируется сигналом напряжения, т.е. входные выводы реагируют на изменение напряжения; при этом вырабатывается соответствующее выходное напряжение. Обратная связь по току относится к петлезамкнутым конфигурациям, в которых сигнал ошибки, используемый для реализации обратной связи, представляет собой ток. В ОУ с токовой обратной связью ток ошибки передается на один из его входных выводов; при этом на выходе также вырабатывается соответствующее выходное напряжение. Заметьте, что при работе обе структуры пытаются достигнуть одинакового результата: нулевое дифференциальное входное напряжение и нулевой входной ток. Идеальный ОУ с обратной связью по напряжению имеет высокоомные входы, результатом чего является нулевой входной ток, и использует обратную связь по напряжению для поддержания нулевого входного напряжения. ОУ с обратной связью по току, напротив, имеют низкоомный вход и использует токовую обратную связь для поддержания нулевого входного тока.

Передаточная функция трансимпедансного усилителя является зависимостью выходного напряжения от входного тока, и коэффициент “усиления” (точнее, коэффициент преобразования) такого усилителя v O /i IN имеет размерность сопротивления. Следовательно, ОУ с токовой обратной связью могут быть отнесены к трансимпедансным усилителям. Интересно отметить, что схема на ОУ с замкнутой обратной связью по напряжению, может быть также отнесена к трансимпедансным схемам при динамическом токовом управлении низкоимпедансным суммирующим выводом (например, при считывании сигнала фотодиода). Такая схема формирует выходное напряжение, равное входному току, умноженному на сопротивление обратной связи.

Так как, в принципе, любая схема с ОУ может быть выполнена либо с обратной связью по току, либо с обратной связью по напряжению, то преобразователь ток-напряжение может быть выполнен на операционном усилителе с токовой обратной связью. Когда используется термин трансимпедансный услитель, необходимо понимать разницу между ОУ с токовой ОС со специфичной структурой и любыми петлезамкнутыми преобразователями тока в напряжение, которые ведут себя как трансимпедансные схемы.

В упрощенной модели операционного усилителя с ОС по напряжению (бесконечное входное сопротивление, нулевое выходное сопротивление и высокий коэффициент усиления при разомкнутой ОС) в неинвертирующем включении разность напряжений на входах (V IN+ –V IN–) усиливается в соответствии с коэффициентом усиления с разомкнутой обратной связью A(s), и часть выходного напряжения передается на инвертирующий вход через резистивный делитель, состоящий из сопротивлений R F и R G .

Для этой схемы:

Подставляя и упрощая получаем:

Верхняя граница частотного диапазона (полоса) схемы с замкнутой обратной связью равна частоте, на которой петлевое усиление LG имеет единичное значение (0 дБ). Член 1 + R F /R G , называемый коэффициентом усиления шума, для неинвертирующей схемы также является коэффициентом усиления сигнала. На диаграмме Боде полоса схемы с замкнутой обратной связью определяется как пересечение графиков коэффициента усиления ОУ с разомкнутой обратной связью A(s) и коэффициента усиления шума NG. Большой коэффициент усиления шума уменьшает петлевое усиление и, следовательно, полосу при замкнутой ОС. Если график A(s) имеет наклон 20 дБ/декада, произведение коэффициента усиления схемы на ее полосу будет постоянной величиной. Таким образом, увеличение коэффициента усиления схемы на 20 дБ приведет к сужению полосы на одну декаду (в десять раз).

В упрощенной модели усилителя с обратной связью по току при неинвертирующем включении неинвертирующий вход является высокоимпедансным входом буфера с единичным коэффициентом усиления, а инвертирующий вход – низкоомный выход этого буфера. Буфер позволяет току ошибки I ERR втекать или вытекать из инвертирующего входа, и единичный коэффициент усиления вынуждает инвертирующий вход следить за сигналом неинвертирующего входа. Ток ошибки через резистор R F передается в высокоимпедансный узел, где он преобразуется в напряжение и передается через буфер (на схеме не показан) на выход. Высокоимпедансный узел является частотно-зависимым сопротивлением Z(s), по роли своей аналогичным усилению с разомкнутой обратной связью для ОУ с ОС по напряжению; он обладает высоким значением импеданса по постоянному току и имеет наклон 20 дБ/декада.

Дорога в десять тысяч ли начинается с первого шага.
(китайская пословица)

Дело было вечером, делать было нечего… И так вдруг захотелось спаять что-нибудь. Этакое… Электронное!.. Спаять - так спаять. Компьютер имеется, Интернет подключен. Выбираем схему. И вдруг оказывается, что схем для задуманного сабжа - вагон и маленькая тележка. И все разные. Опыта нет, знаний маловато. Какую выбрать? Некоторые из них содержат какие-то прямоугольнички, треугольнички. Усилители, да еще и операционные… Как они работают - непонятно. Стра-а-ашно!.. А вдруг сгорит? Выбираем, что попроще, на знакомых транзисторах! Выбрали, спаяли, включили… HELP!!! Не работает!!! Почему?

Да потому, что «Простота - хуже воровства»! Это как компьютер: самый быстрый и навороченный - игровой! А для офисной работы достаточно и самого простого. Так же и с транзисторами. Спаять на них схему мало. Надо еще уметь её настроить. Слишком много «подводных камней» и «граблей». А для этого зачастую требуется опыт отнюдь не начального уровня. Так что же, бросать увлекательное занятие? Отнюдь! Просто не надо бояться этих «треугольничков-прямоугольничков». С ними работать, оказывается, во многих случаях намного проще, чем с отдельными транзисторами. ЕСЛИ ЗНАТЬ - КАК!

Вот этим: пониманием, как работает операционный усилитель (ОУ, или по-английски OpAmp) мы сейчас и займемся. При этом будем рассматривать его работу буквально «на пальцах», практически не пользуясь никакими формулами, разве что кроме закона дедушки Ома: «Ток через участок цепи (I ) прямо пропорционален напряжению на нем (U ) и обратно пропорционален его сопротивлению (R )»:
I = U / R . (1)

Для начала, в принципе, не так уж и важно, как именно ОУ устроен внутри. Просто примем в качестве допущения, что он представляет собой «черный ящик» с какой-то там начинкой. На данном этапе не будем рассматривать и такие параметры ОУ, как «напряжение смещения», «напряжение сдвига», «температурный дрейф», «шумовые характеристики», «коэффициент подавления синфазной составляющей», «коэффициент подавления пульсаций напряжений питания», «полоса пропускания» и т.п. Все эти параметры будут важны на следующем этапе его изучения, когда в голове «улягутся» основные принципы его работы ибо «гладко было на бумаге, да забыли про овраги»…

Пока что просто допустим, что параметры ОУ близки к идеальным и рассмотрим, только то, какой сигнал будет на его выходе, если какие-то сигналы подавать на его входы.

Итак, операционный усилитель (ОУ) является дифференциальным усилителем постоянного тока с двумя входами (инвертирующим и неинвертирующим) и одним выходом. Кроме них ОУ имеет выводы питания: положительного и отрицательного. Эти пять выводов имеются в почти любом ОУ и принципиально необходимы для его работы.

ОУ имеет огромный коэффициент усиления, как минимум, 50000…100000, а реально - намного больше. Поэтому, в первом приближении, можно даже допустить, что он равен бесконечности.

Термин «дифференциальный» («different» переводится с английского как «разница», «различие», «разность») означает, что на выходной потенциал ОУ влияет исключительно разность потенциалов между его входами, независимо от их абсолютного значения и полярности.

Термин «постоянного тока» означает, что усиливает ОУ входные сигналы начиная от 0 Гц. Верхний диапазон частот (частотный диапазон), усиливаемых ОУ сигналов зависит от многих причин, таких, как частотные характеристики транзисторов, из которых он состоит, коэффициента усиления схемы, построенной с применением ОУ и т.п. Но этот вопрос уже выходит за рамки первичного ознакомления с его работой и рассматриваться здесь не будет.

Входы ОУ имеют очень большое входное сопротивление, равное десяткам/сотням МегаОм, а то и ГигаОм (и только в приснопамятных К140УД1, да еще в К140УД5 оно составляло всего 30…50 кОм). Столь большое сопротивление входов означает, что на входной сигнал они практически не влияют.

Поэтому с большой степенью приближения к теоретическому идеалу можно считать, что ток во входы ОУ не течет . Это - первое важное правило, которое применяется при анализе работы ОУ. Прошу хорошо запомнить, что оно касается только самого ОУ , а не схем с его применением!

Что же означают термины «инвертирующий» и «неинвертирующий»? По отношению к чему определяется инверсия и вообще, что это за «зверек» такой - инверсия сигнала?

В переводе с латинского одним из значений слова «inversio» является «оборачивание», «переворот». Иными словами, инверсия - это зеркальное отражение (отзеркаливание ) сигнала относительно горизонтальной оси Х (оси времени). На Рис. 1 показаны несколько из множества возможных вариантов инверсии сигнала, где красным цветом обозначен прямой (входной) сигнал и синим - проинвертированный (выходной).

Рис. 1 Понятие инверсии сигнала

Особо следует отметить, что к нулевой линии (как на Рис. 1, А, Б) инверсия сигнала не привязана ! Сигналы могут быть инверсными и асимметрично. Например, оба только в области положительных значений (Рис. 1, В), что характерно для цифровых сигналов или при однополярном питании (об этом речь идти будет дальше), или оба частично в положительной и частично - в отрицательной областях (Рис. 1, Б, Д). Возможны и другие варианты. Главным условием является их взаимная зеркальность относительно какого-то произвольным образом выбранного уровня (например, искусственной средней точки, о которой речь также будет вестись дальше). Иными словами, полярность сигнала тоже не является определяющим фактором.

Изображают ОУ на принципиальных схемах по-разному. За рубежом ОУ раньше изображались, да и сейчас очень часто изображаются в виде равнобедренного треугольника (Рис. 2, А). Инвертирующий вход - символом «минус», а неинвер­тирующий - символом «плюс» внутри треугольника. Эти символы совершенно не означают, что на соответствующих входах потенциал должен быть более положительным или более отрицательным, чем на другом. Они просто-напросто указывают, как реагирует потенциал выхода на потенциалы, подаваемые на входы. В итоге их легко спутать с выводами питания, что может оказаться неожиданными «граблями», особенно для начинающих.


Рис. 2 Варианты условных графических изображений (УГО)
операционных усилителей

В системе отечественных условных графических изображений (УГО) до вступления в силу ГОСТ 2.759-82 (СТ СЭВ 3336-81) ОУ также изображались в виде треугольника, только инвертирующий вход - символом инверсии - кружочком в месте пересе­чения вывода с треугольником (Рис.2, Б), а сейчас - в виде прямоугольника (Рис.2, В).

При обозначении ОУ на схемах инвертирующий и неинвертирующий входы можно менять местами, если так удобнее, однако, традиционно инвертирующий вход изображается вверху, а неинвертирующий - внизу. Выводы питания, как правило, всегда располагают единственным способом (положительный вверху, отрицательный - внизу).

ОУ почти всегда используются в схемах с отрицательной обратной связью (ООС).

Обратной связью называется эффект подачи части выходного напряжения усилителя на его вход, где оно алгебраически (с учетом знака) суммируется с входным напряжением. О принципе суммирования сигналов речь пойдет ниже. В зависимости от того, на какой вход ОУ, инвертирующий или неинвертирующий, подается ОС, различают отрицательную обратную связь (ООС), когда часть выходного сигнала подается на инвертирующий вход (Рис. 3, А) или положительную обратную связь (ПОС), когда часть выходного сигнала подается, соответственно, на неинвертирующий вход (Рис. 3, Б).


Рис. 3 Принцип формирования обратной связи (ОС)

В первом случае, поскольку выходной сигнал является инверсным по отношению ко входному, он вычитается из входного. В результате общее усиление каскада снижается. Во втором случае - суммируется со входным, общее усиление каскада повышается.

На первый взгляд может показаться, что ПОС имеет положительный эффект, а ООС - совершенно бесполезная затея: зачем же снижать усиление? Именно так и посчитали патентные эксперты США, когда в 1928 г. Гарольд С. Блэк попытался запатентовать ООС. Однако, жертвуя усилением, мы существенно улучшаем другие важные параметры схемы, как, например, её линейность, частотный диапазон и пр. Чем глубже ООС, тем меньше характеристики всей схемы зависят от характеристик ОУ.

А вот ПОС (учитывая собственное огромное усиление ОУ), имеет обратное влияние на характеристики схемы и самое неприятное - вызывает ее самовозбуждение. Она, конечно, тоже используется осознанно, например, в генераторах, компараторах с гистерезисом (подробно об этом - далее) и т.п., но в общем виде её влияние на работу усилительных схем с ОУ скорее негативное и требует очень тщательного и обоснованного анализа её применения.

Поскольку ОУ имеет два входа, то возможны такие основные виды его включения с использованием ООС (Рис. 4):


Рис. 4 Основные схемы включения ОУ

а) инвертирующее (Рис. 4, А) - сигнал подается на инвертирующий вход, а неинвертирующий подключается непосредственно к опорному потенциалу (не используется);

б) неинвертирующее (Рис. 4, Б) - сигнал подается на неинвертирующий вход, а инвертирующий подключается непосредственно к опорному потенциалу (не используется);

в) дифференциальное (Рис. 4, В) - сигналы подаются на оба входа, инвертирующий и неинвертирующий.

Для анализа работы этих схем следует учесть второе важнейшее правило , которому подчиняется работа ОУ: Выход операционного усилителя стремится к тому, чтобы разность напряжений между его входами была равна нулю .

Вместе с тем, любая формулировка должна быть необходимой и достаточной , чтобы ограничить всё подмножество подчиняющихся ей случаев. Приведенная выше формулировка, при всей её «классичности», не дает никакой информации о том, на какой же из входов «стремится повлиять» выход. Исходя из неё, получается, что вроде бы ОУ выравнивает напряжения на своих входах, подавая напряжение на них откуда-то «изнутри».

Если внимательно рассмотреть схемы на Рис. 4, можно заметить, что ООС (через Rоос) во всех случаях заведена с выхода только на инвертирующий вход, что дает нам основание переформулировать это правило следующим образом: Напряжение на выходе ОУ, охваченном ООС, стремится к тому, чтобы потенциал на инвертирующем входе уравнялся с потенциалом на неинвертирующем входе .

Исходя из этого определения, «ведущим» при любом включении ОУ с ООС является неинвертирующий вход, а «ведомым» - инвертирующий.

При описании работы ОУ потенциал на его инвертирующем входе часто называют «виртуальным нулем» или «виртуальной средней точкой». Перевод латинского слова «virtus» означает «воображаемый», «мнимый». Виртуальный объект ведет себя близко к поведению аналогичных объектов материальной реальности, т.е., для входных сигналов (за счет действия ООС) инвертирующий вход можно считать подключенным непосредственно к такому же потенциалу, к какому подключен и неинвертирующий вход. Однако, «виртуальный ноль» является всего лишь частным случаем, имеющим место только при двуполярном питании ОУ. При использовании однополярного питания (о чем будет вестись речь ниже), да и во многих других схемах включения, ни на неинвертирующем, ни на инвертирующем входах ноля не будет. Поэтому давайте договоримся, что этот термин мы применять не будем, поскольку он мешает начальному пониманию принципов работы ОУ.

Вот с этой точки зрения и разберем схемы, приведенные на Рис. 4. При этом, для упрощения анализа, примем, что напряжения питания всё-таки двуполярные, равные друг другу по величине (скажем, ± 15 В), со средней точкой (общая шина или «земля»), относительно которой и будем отсчитывать входные и выходные напряжения. Кроме того, анализ будет проводить по постоянному току, т.к. изменяющийся переменный сигнал в каждый момент времени тоже можно представить как выборку значений постоянного тока. Во всех случаях обратная связь через Rоос заведена с выхода ОУ на его инвертирующий вход. Различие заключается только в том, на какие из входов подается входное напряжение.

А) Инвертирующее включение (Рис. 5).


Рис. 5 Принцип работы ОУ в инвертирующем включении

Потенциал на неинвертирующем входе равен нулю, т.к. он подключен к средней точке («земле»). Входной сигнал, равный +1 В относительно средней точки (от GB) подан на левый вывод входного резистора Rвх. Допустим, что сопротивления Rоос и Rвх равны друг другу и составляют 1 кОм (в сумме их сопротивление равно 2 кОм).

Согласно Правилу 2, на инвертирующем входе должно быть такой же потенциал, как и на зануленном неинвертирующем, т.е., 0 В. Следовательно, к Rвх приложено напряжение +1 В. Согласно закону Ома по нему будет протекать ток I вх. = 1 В / 1000 Ом = 0,001 А (1 мА). Направление протекания этого тока показано стрелкой.

Поскольку Rоос и Rвх включены делителем, а согласно Правилу 1 входы ОУ тока не потребляют, то для того, чтобы в средней точке этого делителя напряжение составляло 0 В, к правому выводу Rоос должно быть приложено напряжение минус 1 В, а протекающий по нему ток I оос также должен быть равен 1 мА. Иными словами, между левым выводом Rвх и правым выводом Rоос приложено напряжение 2 В, а ток, протекающий по этому делителю равен 1 мА (2 В / (1 кОм + 1 кОм) = 1 мА), т.е. I вх. = I оос .

Если на вход подать напряжение отрицательной полярности, на выходе ОУ будет напряжение положительной полярности. Всё то же самое, только стрелки, показывающие протекание тока через Rоос и Rвх будут направлены в противоположную сторону.

Таким образом, при равенстве номиналов Rоос и Rвх, напряжение на выходе ОУ будет равно напряжению на его входе по величине, но инверсное по полярности. И мы получили инвертирующий повторитель . Эта схема нередко применяется, если нужно проинвертировать сигнал, полученный с помощью схем, принципиально являющихся инверторами. Например, логарифмических усилителей.

Теперь давайте, сохранив номинал Rвх, равным 1 кОм, увеличим сопротивление Rоос до 2 кОм при том же входном сигнале +1 В. Общее сопротивление делителя Rоос+Rвх увеличилось до 3 кОм. Чтобы в его средней точке остался потенциал 0 В (равный потенциалу неинвертирующего входа), через Rоос должен протекать тот же ток (1 мА), что и через Rвх. Следовательно, падение напряжения на Rоос (напряжение на выходе ОУ) должно составлять уже 2 В. На выходе ОУ напряжение равно минус 2 В.

Увеличим номинал Rоос до 10 кОм. Теперь напряжение на выходе ОУ при тех же остальных условиях составит уже 10 В. Во-о-от! Наконец-то мы получили инвертирующий усилитель ! Его выходное напряжение больше входного (иными словами, коэффициент усиления Ку) во столько раз, во сколько раз сопротивление Rоос больше, чем сопротивление Rвх. Как я ни зарекался не применять формулы, давайте всё-таки отобразим это в виде уравнения:
Ку = – Uвых / Uвх = – Rоос / Rвх. (2)

Знак минус перед дробью правой части уравнения означает только то, что выходной сигнал инверсен по отношению ко входному. И ничего более!

А теперь давайте увеличим сопротивление Rоос до 20 кОм и проанализируем, что получится. Согласно формулы (2) при Ку = 20 и входном сигнале 1 В на выходе должно было бы быть напряжение 20 В. Ан не тут-то было! Мы же ранее приняли допущение, что напряжение питания нашего ОУ составляет всего ± 15 В. Но даже 15 В получить не удастся (почему так - чуть ниже). «Выше головы (напряжения питания) не прыгнешь»! В итоге такого надругательства над номиналами схемы выходное напряжение ОУ «упирается» в напряжение питания (выход ОУ входит в насыщение). Баланс равенства токов через делитель RоосRвх (I вх. = I оос ) нарушается, на инвертирующем входе появляется потенциал, отличный от потенциала на неинвертирующем входе. Правило 2 перестает действовать.

Входное сопротивление инвертирующего усилителя равно сопротивлению Rвх, поскольку через него протекает весь ток от источника входного сигнала (GB).

Теперь давайте заменим постоянный Rоос на переменный, с номиналом, скажем 10 кОм (Рис. 6).


Рис. 6 Схема инвертирующего усилителя с переменным усилением

При правом (по схеме) положении его движка усиление будет составлять Rоос / Rвх = 10 кОм / 1 кОм = 10. Перемещая движок Rоос влево (уменьшая его сопротивление) усиление схемы будет снижаться и, наконец, при крайнем левом его положении станет равным нулю, поскольку числитель в приведенной выше формуле станет равным нулю при любом значении знаменателя. На выходе будет ноль также при любом значении и полярности входного сигнала. Такая схема часто применяется в схемах усиления звуковых сигналов, например, в микшерах, где приходится регулировать усиление от нуля.

Б) Неинвертирующее включение (Рис. 7).


Рис. 7 Принцип работы ОУ в неинвертирующем включении

Левый вывод Rвх подключен к средней точке («земле»), а входной сигнал, равный +1 В подан прямо на неинвертирующий вход. Поскольку нюансы анализа «разжеваны» выше, здесь будем уделять внимание только существенным отличиям.

На первом этапе анализа также примем сопротивления Rоос и Rвх равными друг другу и составляющими 1 кОм. Т.к. на неинвертирующем входе потенциал составляет +1 В, то по Правилу 2 такой же потенциал (+1 В) должен быть и на инвертирующем входе (показано на рисунке). Для этого на правом выводе резистора Rоос (выходе ОУ) должно быть напряжение +2 В. Токи I вх. и I оос , равные 1 мА, текут теперь через резисторы Rоос и Rвх в обратном направлении (показаны стрелками). У нас получился неинвертирующий усилитель с усилением, равным 2, поскольку входной сигнал, равный +1 В формирует выходной сигнал, равный +2 В.

Странно, не так ли? Номиналы те же, что и в инвертирующем включении (различие только в том, что сигнал подан на другой вход), а усиление налицо. Разберемся в этом чуть позже.

Теперь увеличиваем номинал Rоос до 2 кОм. Чтобы сохранить баланс токов I вх. = I оос и потенциал инвертирующего входа +1 В, на выходе ОУ должно быть уже +3 В. Ку = 3 В / 1 В = 3!

Если сравнить значения Ку при неинвертирующем включении с инвертирующим, при тех же номиналах Rоос и Rвх, то получается что коэффициент усиления во всех случаях больше на единицу. Выводим формулу:
Ку = Uвых / Uвх + 1 = (Rоос / Rвх) + 1 (3)

Почему же так происходит? Да очень просто! ООС действует точно так же, как и при инвертирующем включении, но согласно Правилу 2, к потенциалу инвертирующего входа в неинвертирующем включении всегда прибавляется потенциал неинвертирующего входа.

Так что же, при неинвертирующем включении нельзя получить усиление, равное 1? Почему же нельзя - можно. Давайте уменьшать номинал Rоос, аналогично тому, как мы анализировали Рис. 6. При его нулевом значении - перемыкании выхода с инвертирующем входом накоротко (Рис. 8, А), согласно Правилу 2, на выходе будет такое напряжение, чтобы потенциал инвертирующего входа был равен потенциалу неинвертирующего входа, т.е., +1 В. Получаем: Ку = 1 В / 1 В = 1 (!) Ну, а поскольку инвертирующий вход тока не потребляет и разности потенциалов между ним и выходом нет, то и никакой ток в этой цепи не протекает.


Рис. 8 Схема включения ОУ, как повторителя напряжения

Rвх становится вообще лишним, т.к. он подключается параллельно нагрузке, на которую должен работать выход ОУ и через него совершенно зря будет протекать его выходной ток. А что будет, если оставить Rоос, но убрать Rвх (Рис. 8, Б)? Тогда в формуле усиления Ку = Rоос / Rвх + 1 сопротивление Rвх теоретически становится близким к бесконечности (в реальности, конечно же, нет, т.к. существуют утечки по плате, да и входной ток ОУ хоть и пренебрежимо мал, но нулю всё-таки не равен), при чем соотношение Rоос / Rвх приравнивается к нулю. В формуле остается только единица: Ку = + 1. А усиление меньше единицы для этой схемы можно получить? Нет, меньше не получится ни при каких обстоятельствах. «Лишнюю» единицу в формуле усиления на кривой козе не объедешь…

После того, как мы убрали все «лишние» резисторы, получается схема неинвертирующего повторителя , показанная на Рис. 8, В.

На первый взгляд, такая схема не имеет практического смысла: зачем нужно единичное да еще и неинверсное «усиление» - что, нельзя просто подать сигнал дальше??? Однако, такие схемы применяются довольно часто и вот почему. Согласно Правилу 1 ток во входы ОУ не течет, т.е., входное сопротивление неинвертирующего повторителя очень большое - те самые десятки, сотни и даже тысячи МОм (это же относится и к схеме по Рис. 7)! А вот выходное сопротивление очень малое (доли Ома!). Выход ОУ «пыхтит изо всех сил», стараясь, согласно Правилу 2, поддержать на инвертирующем входе такой же потенциал, как и на неинвертирующем. Ограничением является только допустимый выходной ток ОУ.

А вот с этого места мы немного вильнем в сторону и рассмотрим вопрос выходных токов ОУ чуть подробнее.

Для большинства ОУ широкого применения в технических параметрах указано, что сопротивление нагрузки, подключенной к их выходу, не должно быть меньше 2 кОм. Больше - сколько угодно. Для намного меньшего числа оно составляет 1 кОм (К140УД…). Это значит, что при наихудших условиях: максимальном напряжении питания (например, ±16 В или суммарно 32 В), нагрузкой, подключенной между выходом и одной из шин питания и максимальном выходном напряжении противоположной полярности, к нагрузке будет приложено напряжение около 30 В. При этом ток через нее составит: 30 В / 2000 Ом = 0,015 А (15 мА). Не так, чтобы мало, но и не особо много. К счастью, большинство ОУ широкого применения имеют встроенную защиту от превышения выходного тока - типичное значение максимального выходного тока составляет 25 мА. Защита предотвращает перегрев и выход ОУ из строя.

Если напряжения питания не максимально допустимые, то минимальное сопротивление нагрузки можно пропорционально уменьшать. Скажем, при питании 7,5…8 В (суммарно 15…16 В) оно может составлять 1 кОм.

В) Дифференциальное включение (Рис. 9).


Рис. 9 Принцип работы ОУ в дифференциальном включении

Итак, допустим, что при одинаковых номиналах Rвх и Rоос, равных 1 кОм, на оба входа схемы поданы одинаковые напряжения, равные +1 В (Рис. 9, А). Поскольку потенциалы с обеих сторон резистора Rвх равны друг другу (напряжения на резисторе равно 0), ток через него не протекает. А значит, равен нулю и ток через резистор Rоос. Т.е., эти два резистора никакой функции не выполняют. По сути, мы фактически получили неинвертирующий повторитель (сравните с Рис. 8). Соответственно, на выходе получим такое же напряжение, как и на неинвертирующем входе, т.е., +1 В. Поменяем полярность входного сигнала на инвертирующем входе схемы (перевернем GB1) и подадим минус 1 В (Рис. 9, Б). Теперь между выводами Rвх приложено напряжение 2 В и через него течет ток I вх = 2 мА (надеюсь, что подробно расписывать, почему так - уже не нужно?). Для того, чтобы скомпенсировать этот ток, через Rоос тоже должен протекать ток, равный 2 мА. А для этого на выходе ОУ должно быть напряжение +3 В.

Вот где проявился ехидный «оскал» дополнительной единички в формуле коэффициента усиления неинвертирующего усилителя. Получается, что при таком упрощенном дифференциальном включении разница в коэффициентах усиления постоянно сдвигает выходной сигнал на величину потенциала на неинвертирующем входе. Проблема-с! Однако, «Даже если вас съели - у вас всё равно остаётся как минимум два выхода». Значит, нам каким-то образом надо уравнять коэффициенты усиления инвертирующего и неинвертирующего включений, чтобы «нейтрализовать» эту лишнюю единичку.

Для этого подадим входной сигнал на неинвертирующий вход не напрямую, а через делитель Rвх2, R1 (Рис. 9, В). Примем их номиналы также по 1 кОм. Теперь на неинвертирующем (а значит, и на инвертирующем тоже) входе ОУ будет потенциал +0,5 В, через него (и Rоос) будет протекать ток I вх = I оос = 0,5 мА, для обеспечения которого на выходе ОУ должно быть напряжение, равное 0 В. Фу-у-ух! Мы добились, чего хотели! При равных по величине и полярности сигналах на обеих входах схемы (в данном случае +1 В, но то же самое будет справедливо и для минус 1 В и для любых иных цифровых значений), на выходе ОУ будет сохраняться нулевое напряжение, равное разнице входных сигналов.

Проверим это рассуждение, подав на инвертирующий вход сигнал отрицательной полярности минус 1 В (Рис. 9, Г). При этом I вх = I оос = 2 мА, для чего на выходе должно быть +2 В. Всё подтвердилось! Уровень выходного сигнала соответствует разнице между входными.

Конечно, при равенстве Rвх1 и Rоос (соответственно, Rвх2 и R1) усиления мы не получим. Для этого нужно увеличить номиналы Rоос и R1, как это делали при анализе предыдущих включений ОУ (не буду повторяться), причем должно строго соблюдаться соотношение:

Rоос / Rвх1 = R1 / Rвх2. (4)

Что же полезного мы получаем от такого включения практически? А получаем мы замечательное свойство: выходное напряжение не зависит от абсолютных значений входных сигналов, если они равны друг другу по величине и полярности. На выход поступает только разностный (дифференциальный) сигнал. Это позволяет усиливать очень малые сигналы на фоне помехи, одинаково действующей на оба входа. Например, сигнал с динамического микрофона на фоне наводки сети промышленной частоты 50 Гц.

Однако, в этой бочке меда, к сожалению, присутствует ложка дегтя. Во-первых, равенство (4) должно соблюдаться очень строго (вплоть до десятых а иногда и сотых процента!). Иначе возникнет разбаланс токов, действующих в схеме, а следовательно, кроме разностных («противофазных») сигналов будут усиливаться и сочетанные («синфазные») сигналы.

Давайте, разберемся с сущностью этих терминов (Рис. 10).


Рис. 10 Сдвиг фазы сигнала

Фаза сигнала - это величина, характеризующая смещение начала отсчета периода сигнала относительно начала отсчета времени. Поскольку и начало отсчета времени, и начало отсчета периода выбираются произвольно, фаза одного периодического сигнала физическим смыслом не обладает. Однако разность фаз двух периодических сигналов - это величина, имеющая физический смысл, она отражает запаздывание одного из сигналов относительно другого. Что считать началом периода, не имеет никакого значения. За точку начала периода можно взять нулевое значение с положительным наклоном. Можно - максимум. Всё в нашей власти.

На Рис. 9 красным обозначен исходный сигнал, зеленым - сдвинутый на ¼ периода относительно исходного и синим - на ½ периода. Если сравнить красную и синюю кривые с кривыми на Рис. 2, Б, то можно заметить, что они взаимно инверсны . Т.о., «синфазные сигналы» - это сигналы, совпадающие друг с другом в каждой своей точке, а «противофазные сигналы» - инверсные друг относительно друга.

В то же время, понятие инверсии более широкое, чем понятие фазы , т.к. последнее применимо только к регулярно повторяющимся, периодическим сигналам. А понятие инверсии применимо к любым сигналам, в том числе и непериодическим, как, например, звуковой сигнал, цифровая последовательность, либо постоянное напряжение. Чтобы фаза была состоятельной величиной, сигнал должен быть периодическим хотя бы на некотором интервале. В противном случае, и фаза и период превращаются в математические абстракции.

Во-вторых, инвертирующий и неинвертирующий входы в дифференциальном включении при равенстве номиналов Rоос = R1 и Rвх1 = Rвх2 будут иметь различные входные сопротивления. Если входное сопротивление инвертирующего входа определяется только номиналом Rвх1, то неинвертирующего - номиналами последовательно включенных Rвх2 и R1 (ещё не забыли, что входы ОУ тока не потребляют?). В приведенном выше примере они будут составлять, соответственно, 1 и 2 кОм. А если мы увеличим Rоос и R1 для получения полноценного усилительного каскада, то разница возрастет еще существеннее: при Ку = 10 - до, соответственно, всё того же 1 кОм и целых 11 кОм!

К сожалению, на практике обычно ставят номиналы Rвх1 = Rвх2 и Rоос = R1. Однако, это приемлемо, только если источники сигнала для обоих входов имеют очень низкое выходное сопротивление . Иначе оно образует делитель с входным сопротивлением данного усилительного каскада, а поскольку коэффициент деления таких «делителей» будет разным, то и результат очевиден: дифференциальный усилитель с такими номиналами резисторов не будет выполнять своей функции подавления синфазных (сочетанных) сигналов, либо выполнять эту функцию плохо.

Одним из путей решения данной проблемы может быть неравенство номиналов резисторов, подключенных к инвертирующему и неинвертирующему входам ОУ. А именно, чтобы Rвх2 + R1 = Rвх1. Ещё одним важным моментом является достижение точного соблюдения равенства (4). Как правило, этого добиваются путем разбиения R1 на два резистора - постоянный, обычно составляющий 90% от нужного номинала и переменный (R2), сопротивление которого составляет 20% от нужного номинала (Рис. 11, А).


Рис. 11 Варианты балансировки дифференциального усилителя

Путь общепринятый, но опять же, при таком способе балансировки пусть и немного, но изменяется входное сопротивление неинвертирующего входа. Намного стабильнее вариант с включением подстроечного резистора (R5) последовательно с Rоос (Рис. 11, Б), поскольку Rоос в формировании входного сопротивления инвертирующего входа участия не принимает. Главное - сохранить соотношения их номиналов, аналогично варианту «А» (Rоос / Rвх1 = R1 / Rвх2).

Коль скоро мы повели речь о дифференциальном включении и упомянули повторители, хотелось бы описать одну интересную схемку (Рис. 12).


Рис. 12 Схема переключаемого инвертирующего/неинвертирующего повторителя

Входной сигнал подается одновременно на оба входа схемы (инвертирующий и неинвертирующий). Номиналы всех резисторов (Rвх1, Rвх2 и Rоос) равны друг другу (в данном случае возьмем их реальные значения: 10…100 кОм). Неинвертирующий вход ОУ ключом SA может замыкаться на общую шину.

В замкнутом положении ключа (Рис. 12, А) резистор Rвх2 в работе схемы не участвует (через него только «бесполезно» течет ток I вх2 от источника сигнала на общую шину). Получаем инвертирующий повторитель с усилением равным минус 1 (см. Рис. 6). А вот при разомкнутом положении ключа SA (Рис. 12, Б) получаем неинвертирующий повторитель с усилением равным +1.

Принцип работы этой схемы можно выразить и несколько по-другому. При замкнутом ключе SA она работает как инвертирующий усилитель с усилением, равным минус 1, а при разомкнутом - одновременно (!) и как инвертирующий усилитель с усилением, минус 1, и как неинвертирующий усилитель с усилением +2, откуда: Ку = +2 + (–1) = +1.

В таком виде эту схему можно использовать, если, например, на этапе проектирования неизвестна полярность входного сигнала (скажем, от датчика, к которому нет доступа до начала наладки устройства). Если же в качестве ключа использовать транзистор (например, полевой), управляемый от входного сигнала с помощью компаратора (о нем речь будет вестись ниже), то получим синхронный детектор (синхронный выпрямитель). Конкретная реализация такой схемы, конечно же, выходит за рамки начального ознакомления с работой ОУ и мы её здесь опять же подробно рассматривать не будем.

А теперь давайте рассмотрим принцип суммирования входных сигналов (Рис. 13, А), а заодно разберемся, какие же номиналы резисторов Rвх и Rоос должны быть в реальности.


Рис. 13 Принцип работы инвертирующего сумматора

Берем за основу уже рассмотренный выше инвертирующий усилитель (Рис. 5), только ко входу ОУ подключаем не один, а два входных резистора Rвх1 и Rвх2. Пока что, в «учебных» целях, принимаем сопротивления всех резисторов, включая Rоос, равными 1 кОм. На левые выводы Rвх1 и Rвх2 подаем входные сигналы, равные +1 В. Через эти резисторы протекают токи, равные 1 мА (показаны стрелками, направленными слева направо). Для поддержания на инвертирующем входе такого же потенциала, как и на неинвертирующем (0 В), через резистор Rоос должен протекать ток, равный сумме входных токов (1 мА +1 мА = 2 мА), показанный стрелкой, направленной в противоположном направлении (справа налево), для чего на выходе ОУ должно быть напряжение минус 2 В.

Тот же самый результат (выходное напряжение минус 2 В) можно получить, если на вход инвертирующего усилителя (Рис. 5) подать напряжение +2 В, либо номинал Rвх уменьшить вдвое, т.е. до 500 Ом. Увеличим напряжение, приложенное к резистору Rвх2 до +2 В (Рис. 13, Б). На выходе получим напряжение минус 3 В, что равно сумме входных напряжений.

Входов может быть не два, а сколь угодно много. Принцип работы данной схемы от этого не изменится: выходное напряжение в любом случае будет прямо пропорционально алгебраической сумме (с учетом знака!) токов, проходящих через резисторы, подключенные к инвертирующему входу ОУ (обратно пропорционально их номиналам), независимо от их количества.

Если же, на входы инвертирующего сумматора подать сигналы, равные +1 В и минус 1 В (Рис. 13, В), то протекающие через них токи будут разнонаправлены, они взаимно скомпенсируются и на выходе будет 0 В. Через резистор Rоос в таком случае ток протекать не будет. Иными словами, ток, протекающий по Rоос, алгебраически суммируется со входными токами.

Отсюда также проистекает важный момент: пока мы оперировали небольшими входными напряжениями (1…3 В), выход ОУ широкого применения вполне мог обеспечить такой ток (1…3 мА) для Rоос и что-то ещё оставалось для нагрузки, подключенной к выходу ОУ. Но если напряжения входных сигналов увеличить до максимально допустимых (близких к напряжениям питания), то получается, что весь выходной ток уйдет в Rоос. Для нагрузки ничего не останется. А кому нужен усилительный каскад, который работает «сам на себя»? Кроме того, номиналы входных резисторов, равные всего 1 кОм (соответственно, определяющие входное сопротивление инвертирующего усилительного каскада), требуют протекания по ним чрезмерно больших токов, сильно нагружающих источник сигнала. Поэтому в реальных схемах сопротивление Rвх выбирается не менее 10 кОм, но и желательно не более 100 кОм, чтобы при заданном коэффициенте усиления не ставить Rоос слишком большого номинала. Хотя эти величины и не являются абсолютными, а только прикидочными, как говорится, «в первом приближении» - всё зависит от конкретной схемы. В любом случае нежелательно, чтобы через Rоос протекал ток, превышающий 5…10% максимального выходного тока данного конкретного ОУ.

Суммируемые сигналы можно подавать и на неинвертирующий вход. Получается неинвертирующий сумматор . Принципиально такая схема будет работать точно так же, как и инвертирующий сумматор, на выходе которого будет сигнал, прямо пропорциональный входным напряжениям и обратно пропорциональный номиналам входных резисторов. Однако практически она используется намного реже, т.к. содержит «грабли», которые следует учитывать.

Поскольку Правило 2 действует только для инвертирующего входа, на котором действует «виртуальный потенциал нуля», то на неинвертирующем будет потенциал, равный алгебраической сумме входных напряжений. Следовательно, входное напряжение, имеющееся на одном из входов, будет влиять на напряжение, поступающее на другие входы. «Виртуального потенциала» ведь на неинвертирующем входе нет! В итоге приходится применять дополнительные схемотехнические ухищрения.

До сих пор мы рассматривали схемы на ОУ с ООС. А что будет, если обратную связь убрать вообще? В таком случае мы получаем компаратор (Рис. 14), т.е., устройство, сравнивающее по абсолютному значению два потенциала на своих входах (от английского слова compare - сравнивать). На его выходе будет напряжение, приближающееся к одному из напряжений питания в зависимости от того, какой из сигналов больше другого. Обычно входной сигнал подается на один из входов, а на другой - постоянное напряжение, с которым он сравнивается (т.н. «опорное напряжение»). Оно может быть любым, в том числе и равным нулевому потенциалу (Рис. 14, Б).


Рис. 14 Схема включения ОУ как компаратора

Однако, не всё так хорошо «в королевстве Датском»… А что произойдет, если напряжение между входами будет равно нулю? По идее, на выходе тоже должен быть ноль, но в реальности - никогда . Если потенциал на одном из входов хоть на чуть-чуть перевесит потенциал другого, то уже этого будет достаточно, чтобы на выходе возникли хаотические скачки напряжения из-за случайных возмущений, наводящихся на входы компаратора.

В реальности любой сигнал является «зашумленным», т.к. идеала не может быть по определению. И в области, близкой к точке равенства потенциалов входов, на выходе компаратора появится пачка выходных сигналов вместо одного четкого переключения. Для борьбы с этим явлением в схему компаратора часто вводят гистерезис путем создания слабой положительной ПОС с выхода на неинвертирующий вход (Рис. 15).


Рис. 15 Принцип действия гистерезиса в компараторе за счет ПОС

Проанализируем работу этой схемы. Напряжения её питания составляют ±10 В (для ровного счета). Сопротивление Rвх равно 1 кОм, а Rпос - 10 кОм. В качестве опорного напряжения, поступающего на инвертирующий вход, выбран потенциал средней точки. Красной кривой показан входной сигнал, поступающий на левый вывод Rвх (вход схемы компаратора), синей - потенциал на неинвертирующем входе ОУ и зеленой - выходной сигнал.

Пока входной сигнал имеет отрицательную полярность, на выходе - отрицательное напряжение, которое через Rпос суммируется с входным напряжением обратно пропорционально номиналам соответствующих резисторов. В результате потенциал неинвертирующего входа во всем диапазоне отрицательных значений на 1 В (по абсолютному значению) превышает уровень входного сигнала. Как только потенциал неинвертирующего входа уравняется с потенциалом инвертирующего (для входного сигнала это будет составлять + 1 В), напряжение на выходе ОУ начнет переключаться с отрицательной полярности в положительную. Суммарный потенциал на неинвертирующем входе начнет лавинообразно становиться ещё более положительным, поддерживая процесс такого переключения. В итоге незначительные шумовые колебания входного и опорного сигналов компаратор просто «не заметит», поскольку они будут на много порядков меньшими по амплитуде, чем описанная «ступенька» потенциала на неинвертирующем входе при переключении.

При снижении входного сигнала обратное переключение выходного сигнала компаратора произойдет при входном напряжении минус 1 В. Вот эта разница между уровнями входного сигнала, ведущими к переключению выхода компаратора, равная в нашем случае суммарно 2 В, и называется гистерезисом . Чем больше сопротивление Rпос по отношению к Rвх (меньше глубина ПОС), тем меньший гистерезис переключения. Так, при Rпос = 100 кОм он будет составлять всего 0,2 В, а при Rпос = 1 Мом - 0,02 В (20 мВ). Выбирается гистерезис (глубина ПОС), исходя из реальных условий функционирования компаратора в конкретной схеме. В какой и 10 мВ будет много, а в какой - и 2 В мало.

К сожалению, не каждый ОУ и не во всех случаях можно использовать в качестве компаратора . Выпускаются специализированные микросхемы компараторов, предназначенные для согласования между аналоговыми и цифровыми сигналами. Часть из них специализирована для подключения к цифровым ТТЛ-микросхемам (597СА2), часть - цифровым ЭСЛ-микросхемам (597СА1), однако большинство является т.н. «компараторами широкого применения» (LM393/LM339/К554СА3/К597СА3). Их основное отличие от ОУ заключается в особом устройстве выходного каскада, который выполнен на транзисторе с открытым коллектором (Рис. 16).


Рис. 16 Выходной каскад компараторов широкого применения
и его подключение к нагрузочному резистору

Это требует обязательного применения внешнего нагрузочного резистора (R1), без которого выходной сигнал просто физически не способен сформировать высокий (положительный) выходной уровень. Напряжение +U2, к которому подключается нагрузочный резистор, может быть иным, чем напряжение питания +U1 самой микросхемы компаратора. Это позволяет простыми средствами обеспечить выходной сигнал нужного уровня - будь он ТТЛ или КМОП.

Примечание

В большинстве компараторов, примером которых могут быть сдвоенные LM393 (LM193/LM293) или точно такие же по схемотехнике, но счетверенные LM339 (LM139/LM239), эмиттер транзистора выходного каскада соединен с минусовым выводом питания, что несколько ограничивает область их применения. В этой связи хотел бы обратить внимание на компаратор LM31 (LM111/LM211), аналогом которого является отечественный 521/554СА3, в котором отдельно выведены как коллектор, так и эмиттер выходного транзистора, которые можно подключать к иным напряжениям, чем напряжения питания самого компаратора. Единственным и относительным его недостатком является только то, что в 8-выводном (иногда в 14 выводном) корпусе он всего лишь один.

До сих пор мы рассматривали схемы, в которых входной сигнал поступал на вход(ы) через Rвх, т.е. все они являлись преобразователями входного напряжения в выходное напряжение же. При этом входной ток протекал через Rвх. А что будет, если его сопротивление принять равным нулю? Работать схема будет точно так же, как и рассмотренный выше инвертирующий усилитель, только в качестве Rвх будет служить выходное сопротивление источника сигнала (Rвых), а мы получим преобразователь входного тока в выходное напряжение (Рис. 17).


Рис. 17 Схема преобразователя тока в напряжение на ОУ

Поскольку на инвертирующем входе потенциал такой же, как и на неинвертирующем (в данном случае равен «виртуальному нулю»), весь входной ток (I вх ) будет протекать через Rоос между выходом источника сигнала (G) и выходом ОУ. Входное сопротивление такой схемы близко к нулевому, что позволяет строить на ее основе микро/миллиамперметры, практически не влияющие на ток, протекающий по измеряемой цепи. Пожалуй, единственным ограничением является допустимый диапазон входных напряжений ОУ, который не следует превышать. С её помощью можно построить также, например, линейный преобразователь тока фотодиода в напряжение и множество других схем.

Мы рассмотрели основные принципы функционирования ОУ в различных схемах его включения. Остался один важный вопрос: их питание .

Как было сказано выше, ОУ типично имеет всего 5 выводов: два входа, выход и два вывода питания, положительного и отрицательного. В общем случае используется двуполярное питание, то есть источник питания имеет три вывода с потенциалами: +U; 0; –U.

Еще раз внимательно рассмотрим все приведенные выше рисунки и увидим, что отдельного вывода средней точки в ОУ НЕТ ! Для работы их внутренней схемы она просто не нужна. На некоторых схемах со средней точкой соединялся неинвертирующий вход, однако, это не является правилом.

Следовательно, подавляющее большинство современных ОУ предназначены для питания ОДНОПОЛЯРНЫМ напряжением! Возникает закономерный вопрос: «А зачем же тогда нужно двуполярное питание», если мы так упорно и с завидным постоянством изображали его на рисунках?

Оказывается, оно просто очень удобно для практических целей по следующим причинам:

А) Для обеспечения достаточного тока и размаха выходного напряжения через нагрузку (Рис. 18).


Рис. 18 Протекание выходного тока через нагрузку при различных вариантах питании ОУ

Пока что не будем рассматривать входные (и ООС) цепи схем, изображенных на рисунке («чёрный ящик»). Примем, как данность, что на вход подается какой-то входной синусоидальный сигнал (черная синусоида на графиках) и на выходе получается такой же синусоидальный сигнал, усиленный по отношению ко входному цветная синусоида на графиках).

При подключении нагрузки Rнагр. между выходом ОУ и средней точки соединения источников питания (GB1 и GB2) - Рис. 18, А, ток через нагрузку протекает симметрично относительно средней точки (соответственно, красная и синяя полуволны), а его амплитуда максимальна и амплитуда напряжения на Rнагр. также максимально возможна - она может достигать почти напряжений питания. Ток от источника питания соответствующей полярности замыкается через ОУ, Rнагр. и источник питания (красная и синяя линии, показывающие протекание тока в соответствующем направлении).

Поскольку внутреннее сопротивление источников питания ОУ весьма мало, ток, проходящий через нагрузку, ограничен только её сопротивлением и максимальным выходным током ОУ, которое типично составляет 25 мА.

При питании ОУ однополярным напряжением в качестве общей шины выбирается обычно отрицательный (минусовый) полюс источника питания, к которому и подключается второй вывод нагрузки (Рис. 18, Б). Теперь ток через нагрузку может протекать только в одном направлении (показано красной линией), второму направлению просто неоткуда взяться. Иными словами, ток через нагрузку становится асимметричным (пульсирующим).

Однозначно утверждать, что такой вариант плох, нельзя. Если нагрузкой является, скажем, динамическая головка, то для неё это плохо однозначно. Однако, существует множество применений, когда подключение нагрузки между выходом ОУ и одной из шин питания (как правило, отрицательной полярности), не только допустимо, но и единственно возможно.

Если же всё-таки нужно обеспечить симметрию протекания тока через нагрузку при однополярном питании, то приходится гальванически развязывать её от выхода ОУ гальванически конденсатором С1 (Рис. 18, В).

Б) Для обеспечения нужного тока инвертирующего входа, а также привязки входных сигналов к какому-то произвольно выбранному уровню, принимаемому за опорный (нулевой) - задания режима работы ОУ по постоянному току (Рис. 19).


Рис. 19 Подключение источника входного сигнала при различных вариантах питания ОУ

Теперь рассмотрим варианты подключения источников входных сигналов, исключив из рассмотрения подключение нагрузки.

Подключение инвертирующего и неинвертирующего входов к средней точке соединения источников питания (Рис. 19, А) было рассмотрено при анализе приведенных ранее схем. Если неинвертирующий вход тока не потребляет и просто принимает потенциал средней точки, то через источник сигнала (G) и Rвх, включенные последовательно, ток-то протекает, замыкаясь через соответствующий источник питания! А поскольку их внутренние сопротивления пренебрежимо малы по сравнению со входным током (на много порядков меньше, чем Rвх), то и влияния на напряжения питания он практически не оказывает.

Таким образом, при однополярном питании ОУ, можно совершенно спокойно сформировать потенциал, подаваемый на его неинвертирующий вход, с помощью делителя R1R2 (Рис. 19, Б, В). Типичные номиналы резисторов этого делителя составляют 10…100 кОм, причем нижний (подключенный к общей минусовой шине) крайне желательно зашунтировать конденсатором на 10…22 мкф, чтобы существенно снизить влияние пульсаций напряжения питания на потенциал такой искусственной средней точки .

А вот источник сигнала (G) к этой искусственной средней точке подключать крайне нежелательно всё из-за того же входного тока. Давайте прикинем. Даже при номиналах делителя R1R2 = 10 кОм и Rвх = 10…100 кОм, входной ток I вх составит в лучшем случае 1/10, а в худшем - до 100% тока, проходящего через делитель. Следовательно, на столько же будет «плавать» потенциал на неинвертирующем входе в сочетании (синфазно) с входным сигналом.

Чтобы устранить взаимовлияние входов друг на друга при усилении сигналов постоянного тока при таком включении, для источника сигнала следует организовать отдельный потенциал искусственной средней точки, формируемый резисторами R3R4 (Рис. 19, Б), либо, если усиливается сигнал переменного тока, гальванически развязать источник сигнала от инвертирующего входа конденсатором С2 (Рис. 19, В).

Следует отметить, что в приведенных выше схемах (Рис. 18, 19) мы по умолчанию приняли допущение, что выходной сигнал должен быть симметричным относительно либо средней точки источников питания, либо искусственной средней точки. В реальности это нужно не всегда. Довольно часто нужно, чтобы выходной сигнал имел преимущественно либо положительную, либо отрицательную полярность. Поэтому совершенно не обязательно, чтобы положительная и отрицательная полярности источника питания были равны по абсолютному значению. Одно из них может быть значительно меньше по абсолютному значению, чем другое - только таким, чтобы обеспечить нормальное функционирование ОУ.

Возникает закономерный вопрос: «А каким именно»? Чтобы ответить на него, коротко рассмотрим допустимые диапазоны напряжений входных и выходного сигналов ОУ.

У любого ОУ потенциал на выходе не может быть выше, чем потенциал положительной шины питания и ниже, чем потенциал отрицательной шины питания. Иными словами, выходное напряжение не может выйти за пределы питающих напряжений. Например, для ОУ OPA277 выходное напряжение при сопротивлении нагрузки 10 кОм меньше напряжения положительной шины питания на 2 В и отрицательной шины питания - на 0,5 В. Ширина этих «мертвых зон» выходного напряжения, которых не может достичь выход ОУ, зависит от ряда факторов, таких, как схемотехника выходного каскада, сопротивление нагрузки и др.). Существуют ОУ, у которых мертвые зоны минимальны, например, по 50 мВ до напряжения шин питания при нагрузке 10 кОм (для OPA340), эта особенность ОУ называется «rail-to-rail» (R2R).

С другой стороны, для ОУ широкого применения входные сигналы также не должны превышать напряжения питания, а для некоторых - быть меньше их на 1,5…2 В. Однако, существуют ОУ со специфической схемотехникой входного каскада (например, те же LM358/LM324), которые могут работать не только от уровня отрицательного питания, но даже «минусовее» его на 0,3 В, что существенно облегчает их использование при однополярном питании с общей отрицательной шиной.

Давайте, наконец, рассмотрим и пощупаем этих «жучков-паучков». Можно даже обнюхать и облизать. Разрешаю. Рассмотрим их наиболее частые варианты, доступные начинающим радиолюбителям. Тем более, если приходится выпаивать ОУ из старой аппаратуры.

Для ОУ старых разработок, в обязательном порядке требующих внешних цепей для частотной коррекции, чтобы предотвратить самовозбуждение, было характерно наличие дополнительных выводов. Некоторые ОУ из-за этого даже не «влезали» в 8-выводный корпус (рис. 20, А) и изготавливались в 12-выводных круглых металло-стеклянных, например, К140УД1, К140УД2, К140УД5 (Рис. 20, Б) или в 14-выводных DIP-корпусах, например, К140УД20, К157УД2 (Рис. 20, В). Аббревиатура DIP является сокращением английского выражения «Dual In line Package» и переводится как «корпус с двусторонним расположением выводов».

Круглый металло-стеклянный корпус (Рис. 20, А, Б) применялся, как основной, для импортных ОУ примерно до середины 70-х годов, а для отечественных ОУ - до середины 80-х и применяется сейчас для т.н. «военных» применений («5-я приемка»).

Иногда отечественные ОУ размещались в довольно «экзотических» в настоящее время корпусах: 15-выводный прямоугольный метало-стеклянный для гибридного К284УД1 (Рис. 20, Г), в котором ключом является дополнительный 15-й вывод от корпуса, и других. Правда, планарные 14-выводные корпуса (Рис. 20, Д) для размещения в них ОУ мне лично не встречались. Они применялись для цифровых микросхем.


Рис. 20 Корпуса отечественных операционных усилителей

Современные же ОУ в большинстве своем содержат корректирующие цепи прямо на кристалле, что позволило обходиться минимальным количе­ством выводов (как пример - 5-выводный SOT23-5 для одиночного ОУ - Рис. 23). Это позволило в одном корпусе размещать по два-четыре полностью независимых (кроме общих выводов питания) ОУ, изготовленных на одном кристалле.


Рис. 21 Двухрядные пластиковые корпуса современных ОУ для выводного монтажа (DIP)

Иногда можно встретить ОУ, размещенные в однорядных 8-выводных (Рис. 22) либо 9-выводных корпусах (SIP) - К1005УД1. Аббревиатура SIP является сокращением английского выражения «Single In line Package» и переводится как «корпус с односторонним расположением выводов».


Рис. 22 Однорядный пластиковый корпус сдвоенных ОУ для выводного монтажа (SIP-8)

Они были разработаны для минимизации места, занимаемого на плате, но, к сожалению, «опоздали»: к этому времени широкое распространение заняли корпуса для поверхностного монтажа (SMD - Surface Mounting Device) путем подпайки прямо к дорожкам платы (Рис. 23). Однако, для начинающих их использование представляет существенные сложности.


Рис. 23 Корпуса современных импортных ОУ для поверхностного монтажа (SMD)

Очень часто одна и та же микросхема может «упаковываться» производителем в различные корпуса (Рис. 24).


Рис. 24 Варианты размещения одной и той же микросхемы в разных корпусах

Выводы всех микросхем имеют последовательную нумерацию, отсчитываемую от т.н. «ключа», указывающего на расположение вывода под номером 1. (Рис. 25). В любом случае, если расположить корпус выводами от себя , их нумерация по возрастающей идет против часовой стрелки !


Рис. 25 Расположение выводов операционных усилителей
в различных корпусах (цоколевка), вид сверху;
направление нумерации показано стрелками

В круглых металло-стеклянных корпусах ключ имеет вид бокового выступа (Рис. 25, А, Б). Вот с расположения этого ключа возможны огроменных размеров «грабли»! В отечественных 8-выводных корпусах (302.8) ключ располагается напротив первого вывода (Рис. 25, А), а в импортных ТО-5 - напротив восьмого вывода (Рис. 25, Б). В 12-выводных корпусах, как отечественных (302.12), так и импортных, ключ расположен между первым и 12-м выводами.

Обычно инвертирующий вход как в круглых металло-стеклянных, так и в DIP-корпусах, соединен со 2-м выводом, неинвертирующий - с 3-м, выход - с 6-м, минус питания - с 4-м и плюс питания - с 7-м. Однако, есть и исключения (ещё одни возможные «грабли»!) в цоколевке ОУ К140УД8, К574УД1. В них нумерация выводов сдвинута на один против часовой стрелки по сравнению с общепринятой для большинства других типов, т.е. с выводами они соединены, как в импортных корпусах (Рис. 25, Б), а нумерация соответствует отечественным (Рис. 25, А).

В последние годы большинство ОУ «бытового назначения» стали размещать в пластмассовых корпусах (Рис. 21, 25, В-Д). В этих корпусах ключом является либо углубление (точка) напротив первого вывода, либо вырез в торце корпуса между первым и 8-м (DIP-8) или 14-м (DIP-14) выводами, либо фаска вдоль первой половины выводов (Рис. 21, посередине). Нумерация выводов в этих корпусах также идет против часовой стрелки при виде сверху (выводами от себя).

Как было сказано выше, ОУ с внутренней коррекцией имеют всего пять выводов, из которых только три (два входа и выход) принадлежат каждому отдельному ОУ. Это позволило в одном 8-выводном корпусе разместить на одном кристалле по два полностью независимых (за исключением плюса и минуса питания, требующих еще двух выводов) ОУ (Рис. 25, Г), а в 14-выводном корпусе - даже четыре (Рис. 25, Д). В итоге в настоящее время большинство ОУ выпускаются как минимум сдвоенными, например, TL062, TL072, TL082, дешевые и простые LM358 и др. Точно такие же по внутренней структуре, но счетверенные - соответственно, TL064, TL074, TL084 и LM324.

В отношении отечественного аналога LM324 (К1401УД2) существуют еще одни «грабли»: если в LM324 плюс питания выведен на 4-й вывод, а минус - на 11-й, то в К1401УД2 наоборот: плюс питания выведен на 11-й вывод, а минус - на 4-й. Однако, никаких сложностей с разводкой это отличие не вызывает. Поскольку цоколевка выводов ОУ полностью симметрична (Рис. 25, Д), нужно просто перевернуть корпус на 180 градусов, чтобы 1-й вывод занял место 8-го. Да и всё.

Пара слов относительно маркировки импортных ОУ (да и не только ОУ). Для ряда разработок первых 300 цифровых обозначений было принято обозначать группу качества первой цифрой цифрового кода. Например, ОУ LM158/LM258/LM358, компараторы LM193/LM293/LM393, регулируемые трехвыводные стабилизаторы TL117/TL217/TL317 и пр. совершенно идентичны по внутренней структуре, но различаются по температурному рабочему диапазону. Для LM158 (TL117) диапазон рабочих температур составляет от минус 55 до +125…150 градусов по Цельсию (т.н. «боевой» или военный диапазон), для LM258 (TL217) - от минус 40 до +85 градусов («промышленный» диапазон) и для LM358 (TL317) - от 0 до +70 градусов («бытовой» диапазон). При этом цена на них может быть совершенно не соответствующей такой градации, либо отличаться очень незначительно (неисповедимы пути ценообразования !). Так что покупать их можно с любой маркировкой, доступной «для кармана» начинающего, особо не гоняясь за первой «тройкой».

После исчерпания первых трех сотен цифровой маркировки группы надежности стали отмечать буквами, значение которых расшифровываются в даташитах (Datasheet дословно переводится как «таблица данных») на данные компоненты.

Заключение

Вот мы и изучили «азбуку» работы ОУ, немного захватив и компараторы. Дальше надо учиться складывать из этих «букв» слова, предложения и целые осмысленные «сочинения» (работоспособные схемы).

К сожалению, «Невозможно объять необъятное». Если изложенный в данной статье материал помог понять, как работают эти «черные ящики», то дальнейшее углубление в разбор их «начинки», влияния входных, выходных и переходных характеристик, является задачей более продвинутого изучения. Информация об этом подробно и досконально изложена во множестве существующей литературы. Как говаривал дедушка Вильям Оккам: «Не следует умножать сущности сверх необходимого». Незачем повторять уже хорошо описанное. Нужно только не лениться и прочитать её.


11. http://www.texnic.ru/tools/lekcii/electronika/l6/lek_6.html

Засим позвольте откланяться, с уважением и проч., автор Алексей Соколюк ()