Зарядное устройство на ку202. Простое зарядное устройство

Соблюдение режима эксплуатации аккумуляторных батарей, и в частности режима зарядки, гарантирует их безотказную работу в течение всего срока службы. Зарядку аккумуляторных батарей производят током, значение которого можно определить по формуле

где I - средний зарядный ток, А., а Q - паспортная электрическая емкость аккумуляторной батареи, А-ч.

Классическая зарядного устройства для автомобильного аккумулятора состоит из понижающего трансформатора, выпрямителя и регулятора тока зарядки. В качестве регуляторов тока применяют проволочные реостаты (см. Рис. 1) и транзисторные стабилизаторы тока.

В обоих случаях на этих элементах выделяется значительная тепловая мощность, что снижает КПД зарядного устройства и увеличивает вероятность выхода его из строя.

Для регулировки зарядного тока можно использовать магазин конденсаторов, включаемых последовательно с первичной (сетевой) обмоткой трансформатора и выполняющих функцию реактивных сопротивлений, гасящих избыточное напряжение сети. Упрощенная такого устройства приведена на рис. 2.

В этой схеме тепловая (активная) мощность выделяется лишь на диодах VD1-VD4 выпрямительного моста и трансформаторе, поэтому нагрев устройства незначителен.

Недостатком на Рис. 2 является необходимость обеспечить напряжение на вторичной обмотке трансформатора в полтора раза большее, чем номинальное напряжение нагрузки (~ 18÷20В).

Схема зарядного устройства, обеспечивающее зарядку 12-вольтовых аккумуляторных батарей током до 15 А, причем ток зарядки можно изменять от 1 до 15 А ступенями через 1 А, приведена на Рис. 3.

Предусмотрена возможность автоматического выключения устройства, когда батарея полностью зарядится. Оно не боится кратковременных коротких замыканий в цепи нагрузки и обрывов в ней.

Выключателями Q1 - Q4 можно подключать различные комбинации конденсаторов и тем самым регулировать ток зарядки.

Переменным резистором R4 устанавливают порог срабатывания К2, которое должно срабатывать при напряжении на зажимах аккумулятора, равном напряжению полностью заряженной батареи.

На Рис. 4 представлена еще одного зарядного устройства, в котором ток зарядки плавно регулируется от нуля до максимального значения.

Изменение тока в нагрузке достигается регулированием угла открывания тринистора VS1. Узел регулирования выполнен на однопереходном транзисторе VT1. Значение этого тока определяется положением движка переменного резистора R5. Максимальный ток заряда аккумулятора 10А, устанавливается амперметром. устройства обеспечена со стороны сети и нагрузки предохранителями F1 и F2.

Вариант печатной платы зарядного устройства (см. рис. 4), размером 60х75 мм приведен на следующем рисунке:

В схеме на рис. 4 вторичная обмотка трансформатора должна быть рассчитана на ток, втрое больший зарядного тока, и соответственно мощность трансформатора также должна быть втрое больше мощности, потребляемой аккумулятором.

Названное обстоятельство является существенным недостатком зарядных устройств с регулятором тока тринистором (тиристором).

Примечание:

Диоды выпрямительного мостика VD1-VD4 и тиристор VS1 необходимо установить на радиаторы.

Значительно снизить потери мощности в тринисторе, а следовательно, повысить КПД зарядного устройства можно, регулирующий элемент перенести из цепи вторичной обмотки трансформатора в цепь первичной обмотки. такого устройства показана на рис. 5.

В схеме на Рис. 5 регулирующий узел аналогичен примененному в предыдущем варианте устройства. Тринистор VS1 включен в диагональ выпрямительного моста VD1 - VD4. Поскольку ток первичной обмотки трансформатора примерно в 10 раз меньше тока заряда, на диодах VD1-VD4 и тринисторе VS1 выделяется относительно небольшая тепловая мощность и они не требуют установки на радиаторы. Кроме того, применение тринистора в цепи первичной обмотки трансформатора позволило несколько улучшить форму кривой зарядного тока и снизить значение коэффициента формы кривой тока (что также приводит к повышению КПД зарядного устройства). К недостатку этого зарядного устройства следует отнести гальваническую связь с сетью элементов узла регулирования, что необходимо учитывать при разработке конструктивного исполнения (например, использовать переменный резистор с пластмассовой осью).

Вариант печатной платы зарядного устройства на рисенке 5, размером 60х75 мм приведен на рисунке ниже:

Примечание:

Диоды выпрямительного мостика VD5-VD8 необходимо установить на радиаторы.

В зарядном устройстве на рисунке 5 диодный мостик VD1-VD4 типа КЦ402 или КЦ405 с буквами А, Б, В. Стабилитрон VD3 типа КС518, КС522, КС524, или составленный из двух одинаковых стабилитронов с суммарным напряжением стабилизации 16÷24 вольта (КС482, Д808, КС510 и др.). Транзистор VT1 однопереходной, типа КТ117А, Б, В, Г. Диодный мостик VD5-VD8 составлен из диодов, с рабочим током не менее 10 ампер (Д242÷Д247 и др.). Диоды устанавливаются на радиаторы площадью не менее 200 кв.см, а радиаторы будут сильно нагреваться, в корпус зарядного устройства можно установить вентилятор для обдува.

Впервые столкнувшись с необходимостью реанимации уже мертвых аккумуляторов, я решил изучить вопрос и задаться целью "впихнуть невпихуемое", т.е. выжать из приготовленных на выброс АКБ последнее. Вопрос этот встал в середине 90х - в то время самыми распространенными и используемыми были кислотные, щелочные, никель-кадмиевые и никель-металлгидридные аккумуляторы.

Сразу скажу, что штатные ЗУ, предназначенные для зарядки разных АКБ уже не справлялись: одни уже в начале цикла говорили, что ничего нельзя сделать, а другие честно проходили цикл, но АКБ свою емкость так и не набирала даже на 10%.

Итак, есть два способа зарядки от источника постоянного тока : постоянным (во времени) током или постоянным (во времени) напряжением. Однако, в любом случае отмечается нагрев пациента и закипание (если электролит жидкий). Опуская всякие детали, перейду к тому, что же я вывел для себя.

А получается вот что: заряжать аккумуляторы нужно не только импульсами, а еще и разряжать в паузах между импульсами заряда. Но что еще важнее - импульсы постоянного тока также не очень благоприятны. В итоге родилось вот такое устройство:

Схема зарядного устройства

Плюс аккумулятора по схеме сверху.

Это решение позволяет заряжать аккумулятор, а также разряжать в паузах длиной в полу-период.

R1 - регулируется общий ток, который составляет 10% от емкости АКБ+Jразр, т.е.Jобщ=Jзар+Jразр.

R2 - рассчитывается так, чтоб через него в паузах разряда шел ток Jразр в 10 раз меньший, чем ток заряда. Я для этой цели использую и лампы накаливания, если токи заряда велики.

Например, если емкость АКБ 55Ач, то зарядный ток нужно поддерживать на всем протяжении заряда равным Jзар=5.5+0.55=6.1А.

Первый опыт был настолько многообещающим, что я не мог поверить.

1. Щелочной брикет 10-НКГЦ-10 был настолько мертв, что родное армейское полностью автоматическое ЗУ вообще отказывалось заряжать. Этим устройством я зарядил так, что до сих пор (с 1995 года) пользуюсь этой батареей (естественно, заряжая, при необходимости). Пусть и изредка.

2. Шахтерский фонарь выпуска 1992 года, проведший в разряженном состоянии на балконе друга несколько лет (с нашими-то зимами). На момент вручения его мне в 1997 году он вообще признаков жизни не подавал. А ведь я его до сих пор использую на рыбалке ;-)

3. Аккумулятор в первом автомобиле был при покупке забракован продавцом (UA9CDV) и был крайне рекомендован к смене первой же зимой, т.к. "намаялся он с ним"... А ведь я поездил на авто несколько лет и до сих пор на нем ездит уже третий владелец. Авто 1993 года.

4. Аккумулятор видеокамеры друга в 2000 году не держал уже даже 5 минут. После "правильной" процедуры он заставлял работать видеокамеру в течение 1 часа, хотя по паспорту она всего 45 минут могла непрерывно работать и длительней у него никогда не получалось.

Более перечислять не буду, ибо страница станет навязчивой.

При этом, нужно отметить, что аккумуляторы не "кипели" как при родных зарядниках и не грелись столь сильно.

Правила пользования:

1. Подключить R2 к аккумулятору.

2. Резистором R2 установить разрядный ток 1/10 от необходимого зарядного тока. Будьте бдительны: если аккумулятор не подает признаков жизни, с подбором этого резистора можно ошибиться существенно. Сможете скорректировать его позже.

3. Подключить ЗУ к аккумулятору. Резистором R1 установить зарядный ток Jзар=1/10 от емкости АКБ

4. Скорректировать R2 и R1 минут через 20 после начала заряда.

5. В течение зарядки вручную поддерживать ток заряда постоянным во времени. Это требование желательное, но сколько себя помню - ни разу его не соблюдал:-P Поэтому ток заряда изначально ставил больше, т.к. он неизбежно снизится существенно (зависит от состояния АКБ).

6. При таких условиях, заряжать любой аккумулятор (из перечисленных в начале) нужно 14-16 часов.

Примите во внимание, что эффект от такой зарядки на современных, т.н. "кальцинированных" АКБ не будет столь высоким. Более того, у меня сложилось впечатление, что их специально делают явно одноразовыми. Посудите сами: автомобильные аккумуляторы работают не более 3 лет! Данная процедура не восстанавливает их столь же явно и еще через год приходит понимание, что их маркетологи с технологами свой хлеб отработали - аккумуляторы приходится менять! Некальцинированные аккумуляторы могли и 10 лет "ходить" в умелых руках. Между строк читайте "с данной схемой зарядки" :)

Различают несколько основных типов свинцово-кислотных АКБ:

Wet Standard (Sb/Sb)

Wet Low Maintenance (Sb/Ca)

Wet "Maintenance Free" (Ca/Ca)

И только в первом типе возможна т.н. десульфатация. В остальных типах процесс сульфатации необратим.

В случае с Li-on и Li-Pol аккумуляторами вопрос решается гораздо сложнее: с применением зарядных процессоров и прочей обвязки, однако, у них нет памяти, поэтому есть вариант обойти различные хитрости. Но их заряжать ассиметричным током не рекомендую (лучше постоянным). Хотя и делал это неоднократно))

С учетом такого опыта, я сделал в третью клемму, на которую подал через диод питание с трансформатора. Теперь, подключая аккумулятор к этой клемме и к минусовому выводу, я заряжаю все свои старые аккумуляторы на протяжении уже более 10 лет. Тем более, что и ток выходит знатный!

  • #1

    Спасибо за науку, попробую зарядить свою FT-11R по твоему методу.

  • #2

    Не забудьте аккумулятор отстегнуть и заряжать отдельно. FT11 - древнее радио, но всеравно выжать емкость таким способом с ее АКБ удастся лучше. Но парадокс в том, что родные скоростные зарядные устройства приближают конец АКБ очень быстро - с этим ничего не сделать.

  • #3

    Я долгие годы пользуюсь простейшим зарядным устройством. Отличие от вашего в том, что вместо ограничивающего ток резистора используется лампочка на 220 вольт в первичной цепи трансформатора. Сопротивление лампочки нелинейное, и выполняет функцию стабилизатора тока, и защиты от К.З. Кроме того "лишняя" энергия идет на свечение, и трансформатор практически не греется.

  • #4

    а каким амперметром мерять ток?

  • #5

    Постоянного тока.

  • #6

    что если в схеме применить диммер для регулировки тока/напряжения.. перед входным трансом или после, до диода

  • #7

    Смотря как диммер работает. Насколько я их перебирал и делал сам - они режут синусоиду во времени и это может как-то сказаться на процессе зарядки. Хотя, в данном случае, это хорошая альтернатива. Пробуйте. Только вот стоимость ЗУ от этого сильно проиграет..

  • #8

    Проиграет, точно. Но скажите, разве подбор сопротивления по току не снизит напругу? Вот мне и подумалось, что тиристорный диммер, возможно, мог бы резать ток, и импульс на аккум мог бы идти с фронтом, что неплохо. Как Вы думаете? У Вас, кстати, нет темы по диммерам? У меня сломанный, по отдельности все проверяю - вроде нормально. Но не работает, собако.. А катушку драйвить надо). Старый советский срс-300-...

  • #9

    >разве подбор сопротивления по току не снизит напругу? IIIIII
    Скажем так, не "снизит", а "изменит". Но именно это от него и требуется.

    >тиристорный диммер, возможно, мог бы резать ток, и импульс на аккум мог бы идти с фронтом, что неплохо. Как Вы думаете? IIIIIII
    Как таковой ток резаться (осподи, что за формулировка) будет. Точней, его значение будет зависеть, теперь уже, от скважности, которую и регулирует тиристор. А уж как на аккумулятор влияет не полупериод, а его часть - надо спросить у него)) Я думаю, что заморачиваться не стОит.

    >У Вас, кстати, нет темы по диммерам? IIIIIII
    Как-то не сподобился, но разработки есть. Даже на защите диплома в 1997 году были две разработки, в т.ч. с полной гальванической развязкой. Не исключаю, что теперь выложу статейку на эту тему.

    >Старый советский срс-300 IIIIIII
    Не сталкивался. Впрочем, если это то, о чем я думаю, то не исключаю, что мы с ним знакомы))

  • #10

    "Скажем так, не "снизит", а "изменит". Но именно это от него и требуется."
    У меня есть транс 220/15, приспособил его заряжать акку. Однако ток получился большим. Подобрал сопротивление под 0.1С, как полагается, мои прекрасные 15в превратились в ниже 12в. Хоть этого, понятно, не требовалось). Вот что я имел ввиду.
    Выходит, обязательно применение стабилизаторов?

  • #11

    >прекрасные 15в превратились в ниже 12в
    Так ведь смотря чем мерять. Не забываем, что форма напряжения и его измерение разными измерителями это вещи могут быть не связанные. Т.е. 12В постоянного тока и 12В что-то средневыпрямленного это по форме совсем не одинаковые вещи. Соответственно, на пиках огибающей (не люблю я эту формулировку, применительно к данному случаю) полупериода гораздо больше 15 вольт может быть. А стабилизатор ТОКА нужен лишь для того, чтоб обеспечить ВО ВРЕМЕНИ постоянный ток. По идее, для Li_ion аккумуляторов, после его заряда на процентов 90, нужна зарядка постоянным во времени напряжением. Ну, это другая история.

  • #12

    понял. Спасибо, что поправили мой глаз)).

  • #13

    Данный принцип зарядки (восстановления) АКБ был предложен и опубликован лет двадцать пять назад журналом "Наука и жизнь". Автор статьи рекомендовал использовать для регулировки зарядного тока набор бумажных конденсаторов переключаемых галетником. Конденсатор последовательно включался в первичную обмотку трансформатора. Данное решение избавляло от поисков мощного переменного резистора (ничего не грелось). В качестве нагрузки использовалась лампочка от габаритов на 12в. Благодаря этому устройству мною были восстановлены несколько десятков аккумуляторов гаража нашего предприятия.
    Рекомендую.

  • #14

    Спасибо еще раз! В копилку добрых идей!

  • #15

    спасибо* Сергей (13) от 070812 это очень интересно если не трудно нарисуйте схему для повторения с данными

  • #16

    Давно использую подобную зарядку но безтрансформаторную.
    Все просто. По вышеуказанной схеме убираем трансформатор. R1 меняем на батарею емкостей из расчета(грубо) 16мкф на 1А зарядного тока. Емкости можно подключить через тумблера, чтоб можно было набирать любой необходимый ток зарядки. И все. Имеем зарядку током. Причем регулировать в процессе ничего ненужно. Ток не изменяется на всем протяжении зарядки.
    Единственное у меня стоит диодный мост. Т.е. зарядка идет 2-мя полупериодами. На одном не пробовал. Возможно придется по другому емкость подобрать.
    Главное ненужен трансформатор, емкости можно насобирать со старой советской техники. И подбирать ток довольно просто.
    И еще, емкости должны быть не менее чем на 300 вольт.

  • #17

    Сергей, доброе утро.
    Нарисуйте пожалуйста схему Вашей зарядки, не совсем понял.

  • #18
  • #19

    Сергей, а у вас схема десульфатная?

  • #20

    По поводу просьбы нарисовать схему - рад
    бы, но не знаю как прикрепить файл.
    И еще пара замечаний:
    У меня в последней конструкции конденсаторы также набирались набором от 0,5 до 16 мкф. через тумблеры(как и у Сергея пост № 16)

    По поводу отсутствия трансформатора - сильно не советую - опасно(кроме случаев когда вы на
    300 процентов уверенны, что никто
    случайно не коснется клемм АКБ)

    По посту № 18 - напряжение любое (14-18в),
    важен ток, который вы выставите подбором
    емкостей. По моему, у меня стоял ТН-61 с последовательно включенными двумя накальными (6,3в) и дополнительными (1,5в) обмотками. Надо просто один раз подобрать (исходя из имеющегося набора конденсаторов и линейки напряжений вашего трансформатора)

    По посту № 19: Из опыта использования
    (субъективно) считаю, что эффектом
    десульфатации обладает схема с однополупериодным выпрямителем (с разрядом в паузах)

  • #21

    Александр, ответа на Ваш вопрос нет т.к. мало исходных данных. Какой аккумулятор, какой емкости, насколько убит и пр. 9 вольт попробуйте и будет ясно.

  • #22

    Дмитрий, какой мощности должны быть резисторы, и как их сделать (конструктивно)? Как рассчитать понятно.

  • #23

    Это могут быть лампочки накаливания - их выбор велик. Либо готовые брать и последовательно-параллельно соединять. Либо мотать нихромом - вариантов куча и все их я пробовал. Даже когда заряжал 140Ач аккумулятор и нужно было просадить пару вольт, я брал просто кусок провода 0.75 кв.мм сечением и его длиной корректировал ток.
    А если посчитать сопротивление понятно (закон Ома знаете, видимо), то и мощность посчитать сможете, думаю. Неразберетесь - пишите с конкретным случаем, разберемся.

  • #24

    Здравствуйте!
    Уже сутки по вашему методу заряжаю Ni-Cd аккумуляторы, напряжением 14,4 В и емкостью 1,3 А*ч. Ток заряда 0,15 А, ток разряда вчера был около 0,014 А, но сегодня повысился до 0,018 А, видимо оживать стал. Понизил до 0,013 А и решил еще сутки подождать. Все бы ничего, но смущает, что внутренний индикатор заряда показывает всего 4 деления из 5-ти возможных. Возможно, это из-за низкого напряжения вторичной обмотки трансформатора? На холостом ходу выпрямленное напряжение составляет 9 В, измеренное вольтметром, включенным на постоянный ток. При включении в схему, напряжение, выпрямленное напряжение повышается до 18,2 В.

  • #25

    Поправки:
    *Внутренний индикатор заряда аккумулятора (аккумулятор от шуруповерта);
    *При включении в схему, выпрямленное напряжение повышается до 18,2 В.

  • #26

    Не нужно ориентироваться на всякие индикаторы. Нужно просто дать аккумулятору то, что ему положено+встряхнуть его этой схемой. Далее его использовать со сштатным зарядником. Не ориентируйтесь на напряжения трансформатора или выпрямленного - важен тока заряда! Не понял про "при включении в схему.." Что-куда включаете и зачем? Примите во внимание, что внутри аккумулятора могут быть какие-то дискретные элементы, например конденсатор - он будет улучшать качество выпрямления напряжения и портить форму зарядного тока. Повышение напряжения может косвенно говорить о том, что как раз такой конденсатор где-то там имеется. Хотя рассуждать вообще о чем-то сложно - мало исходных данных. Проще говоря - я не понимаю, о чем Вы говорите.

  • #27

    Собрал схему, аккумы 2НКП20 зарядились прекрасно. Спасибо автору.

  • #28

    Ну вот) Не зря потрачено время на написание и расчеты) Поздравляю!

  • #29

    У меня давно работает подобная схема, только ток заряда я регулирую с помощью конденсатора последовательно с первичной обмоткой ("безватный резистор").

  • #30

    Здравствуйте, подскажите сколько вольт должен выдавать трансформатор во вторичной обмотке при зарядке автомобильного акумулятора?

  • #31

    Вопрос несколько некорректен, т.к. ответ зависит напрямую от вида, типа, качесвта изготовления самого трансформатора, а также типа/емкости/состояния аккумулятора. Начинайте с 9 вольт. Повторюсь: не нужно строго соблюдать 1/10 - какой есть, такой и ставьте +- 1А, а потом аппроксимируете время зарядки.

  • #32

    Можно ли регулировать ток латром по первичке?

  • #33

    Можно, конечно.

  • #34

    можно ли зарядить акб бп на 15В и силой 0,5-1А. Что нужно для того чтобы БП не перегорел?

  • #35

    Нужно ограничить ток. Как это сделать, написано выше.

  • #36

    я конечно извеняюсь, возможно я не четко вписываюсь в ваше обсуждение со своими школьными знаниями электродинамики, но все же прошу у вас совета: как избежать выхода из строя БП на 15В при зарядке полуживого АКБ и что конкретно и куда нужно "прицепить" для этого? И в целом реально ли зарядить АКБ током 0,5А? Что будет если оставить такой "зарядник" на несколько дней заряжать АКБ? Конечно хотелось бы при этом опять таки "привентить" в схему "автоотключалку" либо какую нибудь лампу сигнализирующую о достаточном заряде АКБ. Очень желательно.

  • #37

При нормальных условиях эксплуатации, электрическая система автомобиля самодостаточна. Речь идет об энергоснабжении – связка из генератора, регулятора напряжения, и аккумуляторной батареи, работает синхронно и обеспечивает бесперебойное питание всех систем.

Это в теории. На практике, владельцы автомобилей вносят поправки в эту стройную систему. Или же оборудование отказывается работать в соответствии с установленными параметрами.

Например:

  1. Эксплуатация аккумуляторной батареи, которая исчерпала свой ресурс. Элемент питания «не держит» заряд
  2. Нерегулярные поездки. Длительный простой автомобиля (особенно в период «зимней спячки») приводит к саморазряду АКБ
  3. Автомобиль используется в режиме коротких поездок, с частым глушением и запуском мотора. АКБ просто не успевает подзарядиться
  4. Подключение дополнительного оборудования увеличивает нагрузку на АКБ. Зачастую приводит к повышенному току саморазряда при выключенном двигателе
  5. Экстремально низкая температура ускоряет саморазряд
  6. Неисправная топливная система приводит к повышенной нагрузке: автомобиль заводится не сразу, приходится долго крутить стартер
  7. Неисправный генератор или регулятор напряжения не позволяет нормально заряжать аккумулятор. К этой проблеме относятся изношенные силовые провода и плохой контакт в цепи заряда
  8. И наконец, вы забыли выключить головной свет, габариты или музыку в автомобиле. Для полного разряда аккумулятора за одну ночь в гараже, иногда достаточно неплотно закрыть дверь. Освещение салона потребляет достаточно много энергии.

Любая из перечисленных причин приводит к неприятной ситуации: вам надо ехать, а батарея не в силах провернуть стартер. Проблема решается внешней подпиткой : то есть, зарядным устройством.

Во вкладке четыре проверенных и надежных схем зарядных устройств для автомобиля от простой до самой сложной. Выбирай любую и она будет работать.

Простая схема зарядного устройства на 12В.

Зарядное устройство с регулировкой тока зарядки.

Регулировка от 0 до 10А осуществляется изменением задержки открывания тринистора.

Схема зарядного устройства для аккумулятора с самоотключением после зарядки.

Для заряда аккумуляторов емкостью 45 ампер.

Схема умного зарядного устройства, которое предупредит о не правильном подключении.

Его совершенно несложно собрать своими руками. Пример зарядного устройства сделанного из бесперебойника.

Рассказать в:

Простое в изготовлении зарядное устройство позволяет вос­становить техническое состояние автомобильного аккумулятора за ночь.

Зарядное на однополупериодном выпрямителе

Введение

Длительное хранение или эксплу­атация автомобильных аккумулято­ров приводит к возникновению на пластинах и на клеммах кристалли­ческого сульфата свинца, который препятствует нормальной эксплуата­ции аккумулятора. При плохом контак­те клеммы аккумулятора, покрытые сульфатом, можно почистить напиль­ником с крупной насечкой или наж­дачной бумагой, а вот снять сульфат с пластин аккумулятора таким мето­дом невозможно.

Из за высокого внутреннего со­противления, созданного плохой про­водимостью кристаллов сульфата, машина, возможно, и заведется, но не более одного раза.

В зимнее время, при повышенной вязкости масел заводка двигателя практически невыполнима.

Высокое внутреннее сопротивле­ние снижает напряжение на клеммах аккумулятора, при подключении на­грузки - ниже допустимых пределов, стартер при таком напряжении источ­ника тока не в состоянии провернуть вал двигателя.

Надеяться что аккумулятор вос­становится в пути, при таком состоя­нии пластин нереально.

Если рассматривать генератор автомобиля как источник питания, зарядить аккумулятор возможно, а вот снять кристаллизацию пластин он не сможет в полном объеме из-за не­достаточного напряжения генератора и постоянного, по форме, тока трех­фазного генератора.

Поверхностная (рабочая) сульфи­тация пластин снимается при рабочем напряжении зарядки аккумулятора в 13,8-14,2 В, а внутренняя кристалли­зация пористой структуры пластин на такое напряжение слабо реагирует из- за высокого сопротивления кристал­лов и низкого напряжения заряда.

Для восстановления пластин - снятия кристаллизации - требуется нестандартное напряжение источника тока заряда с возможностью регене­рации пластин.

Добавлять напряжение генерато­ра автомобиля ни в коем случае нельзя - из-за опасности поврежде­ния электрического и электронного оборудования автомобиля нестандар­тным напряжением.

Выход прост - восстановить ак­кумулятор внешним зарядным уст­ройством с повышенным напряжени­ем источника тока. К таким приборам относятся импульсные зарядные ус­тройства.

Хорошо ускоряет восстановление пластин аккумуляторов наличие раз рядной составляющей тока величи­ной, не превышающей 10% от заряд­ного тока.

Средний ток заряда при снятии сульфатации пластин не превышает рекомендуемый для заряда заводом - изготовителем, а напряжение заряда в импульсе превышает стандартное по­чти в два раза, что ускоряет перевод кристаллов сульфата свинца в амор­фный свинец. Время импульса невели­ко и такая зарядка с восстановлени­ем не приводит к излишнему нагреву аккумулятора и короблению пластин.

Импульсное восстановление по­зволяет продлить срок эксплуатации аккумулятора и восстановить его ра­бочее состояние. Устранение круп­нокристаллической сульфатации элементов аккумулятора снижает внутреннее сопротивление до рабо­чего состояния, устраняется само­разряд и межэлектродные замыка­ния, повышается напряжение под нагрузкой, что облегчает запуск ав­томобиля.

Предлагаемое зарядное устрой­ство позволяет выполнить эти усло­вия. Данное устройство не предназ­начено для питания радиоэлектрон­ных устройств.

Принципиальная схема

Принципиальная схема зарядного устройства (рис. 1) состоит из сило­вого трансформатора Т1 с внешними цепями коммутации SA1 и защиты от перегрузки FU1.

Выходные обмотки трансформа­тора коммутируются переключателем SA2 в зависимости от напряжения за­ряжаемого аккумулятора GB1. Выпря­митель импульсного тока VD1 выпол­нен на одном диоде для выполнения требуемой технологии восстановле­ния пластин аккумулятора.

Разрядный ток небольшой ампли­туды создается цепью, состоящей из диода VD2, обратной полярности и ограничительного резистора R1, на­значение котсрого - ускоренное вос­становление пластин аккумулятора.

Второе назначение этой цепи в схеме - устранение перемагничивания железа трансформатора Т1 от действия однополупериодного выпря­мителя на диоде VD1.

При этом снижается необходи­мость в установке в схеме трансфор­матора повышенной мощности, уст­раняется перегрев, повышается КПД.

Двухполупериодные диодные мо­сты, используемые в заводских заряд­ных устройствах, из-за отсутствия временного разрыва между импуль­сами зарядного тока не позволяют вести рекристаллизацию пластин, что приводит к преждевременному элек­тролизу электролита, кипению и на­греву аккумулятора. При использова­нии аккумуляторов с гелиевым напол­нителем или отсутствием воздушных пробок (закрытого типа) это недопус­тимо, из-за возможной разгерметиза­ции корпуса.

Однополупериодная импульсная схема восстановления, с перерывами между импульсами, равными по вре­мени периоду положительного им­пульса тока, снижает температуру электролита и увеличивает время на рекомбинацию (перестроение) ионов электролита. Разрядная составляю­щая тока восстановления позволяет ионам электролита накапливать по­тенциальную энергию, направленную на расплавление "застарелых" крис­таллов сульфата свинца.

Контроль зарядного тока выпол­нен на гальваническом приборе РА1 с внутренним шунтом.

Индикация включения выполнена на светодиоде красного свечения HL1, по его яркости также можно судить о напряжении заряда и наличии тока в цепи заряда.

Конденсатор С1 в первичной цепи обмотки трансформатора и конденса­тор С2 в цепи нагрузки снижают уро­вень помех, возникающих при пере­ключении тока выпрямительным ди­одом VD1, VD2.

Аккумулятор GB1 подключается к зарядному устройству с помощью за­жимов типа "Крокодил".

Восстановление аккумулятора возможно производить без снятия с автомобиля, предварительно положи­тельную клемму питания автомобиля нужно отключить.

Детали устройства

В схеме зарядного устройства на однополупериодном выпрямителе от­сутствуют покупные радиодетали, используются от отслуживших свой срок электронных приборов.

Силовой трансформатор Т1 ис­пользован от ламповых радиоприем­ников: железо предварительно разби­рается, сетевая обмотка использует­ся без изменений, повышающая и накальная аккуратно удаляются по­слойно - перекусыванием кусачками витков, вместо них наматывается но­вая обмотка проводом сечением 0,5- 0,6 мм до заполнения с отводом (при­мерно) от середины. Проводится об­ратная сборка железа. Несколько Ш- образных листов не войдут из-за от­сутствия стяжки - это не повлияет на характеристики трансформатора. При подключенном сетевом напряже­нии вторичное напряжение на отво­дах должно быть в пределах 8-10 В и 16-20 В.

Коммутационные переключатели SA1, SA2 использованы от сетевых тумблеров на ток в 3 А.

Импульсный диод VD1 - диоды КД202-248.

Диод VD2 - Д7, Д226, КД226

В крайнем случае, используются кремневые выпрямительные диоды от компьютерных блоков питания.

Светодиод индикации HL1 допус­тимо установить любого свечения.

При отсутствии в наличии ампер­метра указанного тока, использует­ся любой гальванометр от магнито­фонов (индикация выходного сигна­ла) с искусственным шунтом в виде спирали из проволоки диаметром 0,6-1 мм - 10 витков на каркасе диа­метром 1,6 см. В разрыв положитель­ной шины зарядного тока подключа­ется временно тестер и сверяются по­казания зарядного тока. Количество витков обмотки шунта необходимо по­догнать по показаниям действующе­го амперметра.

Зарядка аккумулятора

Наличие амперметра позволяет отследить процесс рекристаллизации пластин - в начальный момент ток заряда имеет минимальное значение, далее по мере очистки пластин элек­тродов от кристаллизации ток возра­стет до максимального значения и через время, определяемое состояни­ем аккумулятора, ток начнет падать практически до нулевого значения, что и будет индикацией окончания восстановления аккумулятора.

При неверной полярности подклю­чения аккумулятора GB1 светодиод гореть не будет, стрелка амперметра повернется влево - на разряд. Про­должительно, в неверном подключе­нии, аккумулятор держать нельзя, незаряженное состояние может при­вести к переполюсовке электродов и полной невозможности дальнейшего использования аккумулятора.

После нескольких часов восста­новления емкости аккумулятора эле­менты схемы проверяются на нагрев, при удовлетворительных результатах восстановление продолжают.

Ввиду небольшого количества элементов схема собрана в корпусе от блока питания компьютера или типа БП-1 навесным монтажом с ус­тановкой тумблеров, светодиода HL1, гальванометра РА1 на передней па­нели, предохранитель крепится на задней стенке. Диод VD1 устанавли­вается на радиатор размерами 50*30*20 мм.

Соединение зарядного устройства с аккумулятором выполнено много­жильным проводом в виниловой изо­ляции сечением 2,5 мм.

По окончании зарядки в первую оче­редь отключается сеть, затем снимают­ся зажимы с клемм аккумулятора

Владимир Коновалов, Александр Вантеев

г. Иркутск-43, а/я 380

Раздел: [Схемы]
Сохрани статью в:

Длительное хранение или эксплуатация автомобильных аккумуляторов приводит к возникновению на пластинах и на клеммах кристаллического сульфата свинца. При отсутствии контакта клеммы можно почистить напильником с крупной насечкой или наждачной бумагой, а вот очистить пластины таким методом невозможно.

Нагрузка на аккумулятор во время заводки автомобиля составляет 120-150 ампер, то есть почти 1,5 киловатта и зависит от состояния двигателя.

Из-за внутреннего сопротивления, созданного плохой проводимостью кристаллов сульфата свинца, автомашина, возможно, и заведётся но не более одного раза, снижается напряжение на клеммах аккумулятора, при подключении нагрузки - ниже допустимых пределов, стартер при таком напряжении источника тока не в состоянии провернуть вал двигателя.

Надеяться, что аккумулятор зарядится в пути при таком состоянии пластин нереально.

Если рассматривать генератор автомобиля как источник питания, зарядить аккумулятор возможно, а вот снять «застаревшую» кристаллизацию пластин он не в состоянии.

Поверхностная (рабочая) сульфатация пластин снимается при рабочем напряжении зарядки аккумулятора в 13,8-14,2 Вольт, а внутренняя кристаллизация пористой структуры пластин на такое напряжение слабо реагирует из-за высокого сопротивления кристаллов сульфата свинца и низкого напряжения заряда.

Для восстановления пластин - снятия кристаллизации требуется нестандартное напряжение источника тока заряда.

Добавлять напряжение генератора ни в коем случае нельзя - из-за опасности повреждения электрического и электронного оборудования автомобиля нестандартным напряжением, это иногда случается при повреждении реле-регулятора напряжения.
Выход прост -зарядить аккумулятор внешним зарядным устройством с повышенным напряжением источника.

Средний ток заряда при снятии сульфатации пластин не превышает рекомендуемый для заряда заводом - изготовителем, а напряжение заряда в импульсе превышает стандартное почти в половину. Время импульса невелико и такая зарядка с восстановлением не приводит к излишнему нагреву аккумулятора, и короблению пластин.

Двухполярное восстановление пластин позволяет продлить срок эксплуатации аккумулятора и поддержать его рабочее состояние. Повышенное напряжение источника зарядного тока позволяет передать в импульсе мощность, достаточную, для расплавления и перевода кристалла сульфата свинца в аморфный свинец.

Устранение крупнокристаллической сульфатации элементов аккумулятора, снижает внутреннее сопротивление до рабочего состояния, устраняется саморазряд и межэлектродные замыкания, повышается напряжение под нагрузкой, что облегчает запуск автомобиля.

Предлагаемая схема позволяет выполнить эти условия с небольшими затратами из радиодеталей используемых от отслуживших свой срок электронных приборов.

Характеристики устройства:
1. Напряжение сети 210- 230 вольт.
2. Мощность трансформатора 50-100 ватт
3. Напряжение аккумуляторов 6/12 вольт.
4. Ток заряда макс. средний 1 ампер
5. Ток разряда 12 мА.
6. Ток заряда импульсный макс. 3 ампера
7. Время восстановления 6- 18 часов.
8. Аккумулятор: а) открытого типа;б) закрытого типа; в) гелиевый.
9. Ёмкость аккумулятора от 2 до 100 А/час.
Зарядное устройство не предназначено для питания радиоэлектронных устройств.

Принципиальная схема зарядного устройства состоит из силового трансформатора Т2 и защиты от перегрузки FU1.Снижение помех коммутации достигается введением фильтра на двухзвенном трансформаторе Т1 и конденсаторах С1,С2.

Выходная обмотка трансформатора подключена одним выводом - через зарядный тиристор VD1, к минусовой шине аккумулятора GB1, вторым выводом - через прибор контроля зарядного тока PA1, к плюсу аккумулятора.. Выпрямитель импульсного тока обратной полярности -VD2 подаёт в аккумулятор GB1 разрядный ток ограниченный резистором R3. Двухполярный ток облегчает восстановление пластин аккумулятора и защищает трансформатор T1 от перемагничивания железа, как в случае однополярного тока. Выпрямитель импульсного тока восстановления выполнен на одном диоде VD2, что ведёт к ускоренному восстановлению пластин аккумулятора, снижению нагрева как в с использованием моста из четырёх диодов. Диодные мосты, используемые в заводских зарядных устройствах, из-за отсутствия временного разрыва между импульсами зарядного тока не позволяют вести рекристаллизацию пластин, что приводит к преждевременному электролизу электролита, кипению и нагреву аккумулятора. При использовании аккумуляторов с гелиевым наполнителем или отсутствием воздушных пробок (закрытого типа) - это недопустимо, из-за возможной разгерметизации корпуса.

Однополупериодная импульсная схема восстановления, в данном случае с регулятором тока на тиристоре, с перерывами между импульсами равными по времени периоду положительного импульса тока, снижает температуру электролита и увеличивает время на рекомбинацию (перестроение) ионов электролита.

Регулирование тока происходи за счёт изменения времени заряда конденсатора С3, резистором R1. Контроль зарядного тока выполнен на гальваническом приборе РА1 с внутренним шунтом.

Аккумулятор подключается к зарядному устройству с помощью зажимов типа «Крокодил». Восстановление аккумулятора возможно производить без снятия с автомобиля, предварительно положительную клемму питания автомобиля отключить.

Детали устройства

В схеме зарядного устройства отсутствуют покупные радиодетали.
Силовой трансформатор Т1 использован от ламповых радиоприёмников:железо предварительно разбирается, сетевая обмотка используется без изменений, повышающая и накальная аккуратно удаляются послойно - перекусыванием кусачками витков, вместо них наматывается проводом сечением 0,5мм -0,6 мм обмотка до заполнения с отводом (примерно) от середины, количество витков новой вторичной обмотки 2х 9 вольт переменного тока должна соответствовать виткам удалённой обмотки накала ламп на 6,3 вольта.. Далее проводится обратная сборка железа, несколько листов ш- образного железа не войдут - это не повлияет на характеристики трансформатора. При подключенном сетевом напряжении вторичное напряжение на отводах должно быть в пределах 2х 18вольт.
Заводской трансформатор типа ТПП243 или ТН.

Коммутационный переключатель SA1 использован от сетевых тумблеров на ток в 3 ампера.
Конденсатор С1 типа К17 с напряжением 250 - 400Вольт.
Светодиод индикации HL1 допустимо установить любого свечения.

При отсутствии в наличии амперметра указанного тока, используется любой гальванометр от магнитофонов (индикация выходного сигнала), поскольку обмотка такого прибора не выдержит ток заряда, параллельно выводам прибора подключается шунт состоящий из 5-8 витков провода сечением 0,6-1,0 мм. В разрыв положительной шины зарядного тока подключается временно тестер и сверяются показания зарядного тока. Количество витков обмотки шунта необходимо подогнать по показаниям действующего амперметра.

Зарядка аккумулятора
Наличие амперметра позволяет отследить процесс рекристаллизации пластин - в начальный момент ток заряда имеет минимальное значение, далее по мере очистки пластин электродов аккумулятора от кристаллизации, ток возрастёт до максимального значения, и через время, определяемое состоянием аккумулятора, ток начнёт падать практически до нулевого значения, что и будет индикацией окончания времени восстановления аккумулятора.

При отсутствии гальванометра ток заряда можно проверить тестером и при удовлетворительных показателях установить в разрыв перемычку.

При неверной полярности подключения аккумулятора GB1 светодиод гореть не будет, стрелка амперметра повернётся влево - на разряд. Длительно, в неверном подключении, аккумулятор держать нельзя, незаряженное состояние может привести к переполюсовке электродов и полной невозможности дальнейшего использования.

После нескольких часов восстановления ёмкости аккумулятора элементы схемы проверяются на нагрев, при удовлетворительных результатах восстановление продолжают.

Ввиду небольшого количества элементов схема собрана в корпусе от блока питания компьютера или типа БП-1 навесным монтажом с установкой тумблеров SA1, светодиода HL1, высокочастотного гальванометра РА1 типа Т210-М1 на передней панели. Предохранитель FU1 крепится на задней стенке, переменный резистор типа СП-3.

Соединение зарядного устройства с аккумулятором выполнено многожильным проводом в виниловой изоляции сечением 2,5мм с зажимами типа «крокодил» на концах.

По окончании зарядки в первую очередь отключается сеть, затем снимаются зажимы с клемм аккумулятора.

Трансформатор допустимо установить заводской, мощностью 70-120 ватт типа ТПП, ТН, ТС. Вторичная обмотка используется на напряжение 15-18 Вольт для зарядки аккумуляторов для зарядки аккумуляторов 6-12 вольт.

Если аккумулятор не имел сбоев в работе, желательно провести профилактику, к примеру при стоянке на даче подключить на ночь. Основное требование при эксплуатации зарядных устройств - правильная полярность подключения. Недопустимо закрывать вентиляционные устройства корпуса. Внешний вид зарядного устройства во включенном состоянии указано на фотографии зарядного устройства.

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
VD1 Тиристор Т122-25 1 В блокнот
VD2 Диод

КД226Б

1 В блокнот
HL1 Светодиод

АЛ307БМ

1 В блокнот
R1 Переменный резистор 3.3 кОм 1 В блокнот
R2 Резистор

20 Ом

1 1 Ватт В блокнот
R3 Резистор

910 Ом

1 1 Ватт В блокнот
R4 Резистор

3.3 кОм

1 1 Ватт В блокнот
C1, C2 Конденсатор 0.01 мкФ 2